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Abstract This article analyzes the sustainability of market-based instruments such as trad-
able permits for the management of a renewable aquifer used for irrigated agriculture. In
our dynamic hydro-economic model, a water agency aims at satisfying a food security con-
straint within a tradable permit scheme in the presence of myopic heterogeneous agents. We
identify analytically the viability kernel that defines the states of the resource yielding inter-
temporal feasible paths able to satisfy the set of constraints over time and the associated set
of viable quota policies. We then illustrate the theoretical results of the paper with numerical
simulations based on the Western La Mancha aquifer.
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1 Introduction

With 20% of over-exploited aquifers in the world (WWAP 2015), groundwater resources are
under extreme pressure (Wada et al. 2010).With drinkingwater, water demand for agriculture
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remains the main pressure on aquifers, and this pressure is increasing as the population
continues to grow. Indeed, it has been estimated that agriculture will need to produce 60%
more food in 2050 than it does today (FAO 2014), and will thus require more and more
water for irrigation and crop production. To face this potential water crisis, water managers
are mobilized to ensure a sustainable management of renewable aquifers by limiting the
volume of water available for irrigation with respect to the level of recharge. Such a limitation
impacts directly the agricultural production and can be dramatic for population in developing
countries. Maintaining a sufficient level of agricultural activity may also be justified by
social and economic motives like employment in rural areas or relative competitiveness of
local farmers with respect to agricultural markets. The issue of sustainable management of
renewable aquifers is thus strongly connected to the objective of food security.

The question of sustainable aquifer management has been investigated in the literature.
Notably, the use of market-based instruments such as transferable permits has been pro-
posed as a promising way to replenish an aquifer (Provencher 1993), or to efficiently manage
groundwater for irrigated agriculture (Latinopoulos and Sartzetakis 2015). Groundwatermar-
kets consist in a cap and trade system for water rights. A water agency is assumed to set a
cap on the available volume of water and assign individual quotas on an annual basis to
farmers who can trade them on the market. The nature of the water rights differs signifi-
cantly according to the countries which have implemented water markets such as Chile, the
USA and Australia. Differences may concern the extent of aquifer regulation at a national
or local level, the existence, or the lack thereof, of a system of prior appropriation by senior
rights holders as in the USA, the rules of quota allocation in perpetuity or for a given period
of time and joint or separate management of groundwater and surface water markets (see
Montginoul et al. (2016) andWheeler et al. (2016) for recent surveys on groundwater trading
experiences). On the contrary, some European countries like France do not allow farmers to
trade their individual irrigation quotas (Figureau et al. 2014; de Frutos Cachorro et al. 2016).

A common feature of groundwater markets is the transferability of water rights. Trans-
ferability ensures that water is used by farmers with maximum efficiency. As farmers differ
in their productivity, economic efficiency implies that an efficient farmer will produce more
than a less efficient farmer with the same volume of water. As a consequence, efficiency
implies that the total water extraction provides the maximum amount of food production.
The crucial role of transferability has also been pointed out by Knapp et al. (2003). They
showed that transfers between agriculture and urban sectors, between regions and/or within
a region, result in efficient aquifer management. Finally, the successful implementation of
transferable quotas in fisheries (Branch 2008; Chu 2009; Pereau et al. 2012) argues in favor
of the use of transferable permits in aquifers since similarities between groundwater and
biological renewable resources have been highlighted (Roumasset and Wada 2012).

This paper aims at addressing themanagement ofwater as a renewable and limited resource
using transferable quotas in a dynamic hydro-economic model based on the seminal Gisser
and Sanchez (1980) in the context of food security. The state-of-the-art of this literature,
includingmanagement issues and game theoretical models, can be found in Rubio andCasino
(2001), Koundouri (2004), Booker et al. (2012), Madani and Dinar (2013), Tomini (2014)
and de Frutos et al. (2014). Regulation has been justified by Esteban and Albiac (2011,
2012) and Esteban and Dinar (2016) when the decline in the water table creates negative
externalities on surrounding ecosystems. In that case regulation is needed when agents, at
an individual level, have no incentive to take into account the impacts of their resource use
on ecosystems. Regulation can be achieved by implementing a water management system
based on transferable permits among farmers as in Latinopoulos and Sartzetakis (2015).
This paper contributes to the existing literature by introducing a food security constraint in
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the design of the water agency policy. The Gisser-Sanchez model is extended with a water
agency which has to implement intertemporal management of groundwater by setting limits
on total extraction at each period to achieve food production objectives. In particular, the paper
determines the conditions under which the water agency is constrained in the setting of the
water cap and how the water agency deals with economic efficiency, agricultural production
and the sustainability of the resource.

Analysis of our hydro-economic model relies on the weak invariance (Aubin 1990) or
viable control method (Clarke et al. 1995). This approach focuses on identifying inter-
temporal feasible paths within a set of desirable objectives or constraints (Béné et al. 2001).
This framework has already been applied to renewable resource management and especially
to the regulation of fisheries (Martinet et al. 2007; Doyen and Pereau 2012), but its application
to groundwater management is original. By introducing food production objectives, the via-
bility method shows how water authorities can achieve sustainability objectives for both the
resource and the farmers. This method provides a new explanation for the “Gisser-Sanchez
Effect” in the context of groundwater markets by showing which intertemporal quota policies
can be implemented by a water agency.

The paper is structured as follows: Sect. 2 is devoted to the description of our dynamic
hydro-economic model and Sect. 3 introduces the objectives of the water agency. Section 3
characterizes the feasible resource states and the viable water policies under several con-
straints. An application based on the Western La Mancha aquifer illustrates the main results
in Sect. 5. The last section concludes.

2 The Hydro-Economic Model

2.1 The Resource Dynamics

An aquifer is described by its state variable (ie the water table) H(t) ∈ [0; SL ] at time t where
SL stands for the height of the ground surface. The aquifer is empty at H(t) = 0 and full at
H(t) = SL . The water table increases with constant recharge R > 0 and is reduced by the
extraction Q(t) dedicated to irrigated agriculture. The total volume of extracted water Q(t)
corresponds to the quota set by a water agency. We assume that a proportion μ of the water
used for irrigation comes back to the aquifer where 0 < μ < 1 stands for the non-absorption
coefficient.

Based on Gisser and Sanchez (1980), the dynamics of the resource is

H(t + 1) = H(t) + R

AS
− (1 − μ)

AS
Q(t), (1)

H(0) = H0,

where A stands for the area of the aquifer and S the storage coefficient.
Equation (1) can be rewritten as

H(t + 1) = H(t) + 1 − μ

AS
(QR − Q(t)) , (2)

where QR = R
1−μ

stands for the level of extraction which maintains a constant water table
(H(t + 1) = H(t)). This equilibrium constraint takes the form of a horizontal line in the
state-control (H, Q) space. Above the line given by QR , extraction exceeds the net recharge
(Q(t) > QR) and the water table diminishes. An extraction lower than the threshold extrac-
tion QR induces an increase in the water table.
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2.2 The Water Permit Market

Weassumea set ofn heterogeneous farmers usingwater extracted from the aquifer, denotedby
wi , as the only input to irrigate their crops. The total crop income is given by the product of the
crop yield yi and the constant price of the agricultural product py . The crop-water production
function yi (wi ) increases at a decreasing ratewith y′

i (wi ) > 0 and y′′
i (wi ) < 0.Thismodeling

of the agricultural sector is consistent with the literature (Latinopoulos and Sartzetakis 2015;
de Frutos Cachorro et al. 2016). With respect to Latinopoulos and Sartzetakis (2015), we
consider one crop and one group of farmers instead of two crops and two associated groups
of identical farmers who can trade their irrigation quotas. However, the analytical structure is
the same. A valuable extension can be found in de Frutos Cachorro et al. (2016), who assume
that each farmer can choose the share of land that will be used for different crops.1

The pumping cost function c(H) is assumed to be decreasing and convex with respect to
the water table with c′(H) < 0 and c′′(H) > 0. The externality occurs through the extraction
cost, which increases when the water table becomes lower. Moreover, the unit extraction cost
is assumed to be the same for farmers at each point of the aquifer.

The individual profit of farmer i (before the implementation of a quota market) can be
written as follows:

πi (H(t), wi (t)) = py yi (wi (t)) − c(H(t))wi (t). (3)

We further assume that a water agency allocates transferable water quotas qi (t) to the n
farmers at the beginning of each period t . Each farmer can buy or sell quota units on the
market at a unit price m(t) to have the right to extract and use water. It is assumed that water
permits are not transferable over time, implying that banking or borrowing of water permits is
not possible. The total water quota demand depends on the optimal individual quota demands
denoted by D∗

i (H(t),m(t)) which are the outcome of the maximisation of individual profits
given by:

max
wi ,qi

πi (H(t), wi (t)) − m(t)qi (t)

subject to wi (t) ≤ qi (t). (4)

When the quota constraint does not bind, the optimal water consumption is derived
from ∂πi (H(t), wi (t))/∂wi (t) = 0 and the individual demand for water quotas is nil
D∗
i (H(t),m(t)) = 0. Otherwise when ∂πi (H(t), wi (t))/∂wi (t) = λi > 0 with λi the

Lagrange multiplier associated to the quota constraint, it can be shown that the quota con-
straint binds and optimality condition is given by2:

y′
i (qi (t)) = m(t) + c(H(t))

py
. (5)

Taking the total differential of Eq. (5) shows that the individual quota demand function
increases with the water table (∂D∗

i /∂H = c′(H)

py y′′
i

> 0) and decreases with the quota

price (∂D∗
i /∂m = 1

py y′′
i

< 0) since y′′
i < 0 and c′(H) < 0. Let be Qs = Q(t) the

total amount of quotas allocated by the water agency to the farmers where Qs stands for

1 The model could be extended by allowing farmers to lease part of their water rights to other users and to
reduce their acreage temporarily through crop rotation or fallowing. A major improvement could be a joint
analysis of land and water markets. When water pumping rights are attached to land ownership, the land price
will reflect the value of the rent attached to the water quota in the event of land transactions.
2 See Appendix.
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the quota supply. The aggregated demand for quotas at a given price m(t) is denoted by
D∗(H(t),m(t)) = ∑

i D
∗
i (H(t),m(t)). The equilibrium quota price is determined by the

clearing-market condition on the water market implying equality between quota supply and
demand: Q(t) = D∗(H(t),m(t)). It can be shown that the equilibrium quota price m∗(t) =
m∗(H(t), Q(t)) is an increasing function of the water table (∂m∗/∂H = −c′(H) > 0) and a
decreasing function of the quota supply (∂m∗/∂Q = − py

β
< 0) with β = −∑

i
1
y′′
i

> 0. An

increase in the water quota supply with unchanged demand implies a decrease in the quota
price. When the water table is high, pumping costs are low. This increases water extraction
and thus the demand for permits, pushing the water price up.

In the sequel of the paper, we consider the following specifications for the crop-water
production function and the cost function. The crop-water production function is assumed to
be quadratic (Burness and Brill 2001; Latinopoulos and Sartzetakis 2015) as follows:

yi (wi (t)) = aiwi (t) − bi
2

w2
i (t), (6)

where ai > 0 and bi > 0 are technical parameters. Marginal productivity is positive and
decreasing. Individual production reaches itsmaximum forwi = ai/bi yielding yi = a2i /2bi .
This implies that individual water extraction is bounded as follows: wi ∈ [0, wi ]. We deduce
that the maximum amount of water consumption isW = ∑n

i=1 wi and the maximum amount
of production is therefore Y = ∑n

i=1 yi .
The unitary cost c(H(t)) is given by

c(H(t)) = c1(SL − H(t)),

= c0 − c1H(t), (7)

where c0 = c1SL stands for a fixed cost and c1 is the marginal pumping cost. When the water
table is at its maximum elevation, the unit cost is nil (Rubio and Casino 2001).

Based on these specifications, the individual quota water demand given by Eq. (5) is

q∗
i (t) = ai

bi
− c0

pybi
− m(t)

pybi
+ c1

pybi
H(t). (8)

Summing the individual demands yields the aggregate water demand for quotas3

Q∗(t) = W − β
c0
py

− β
m(t)

py
+ β

c1
py

H(t), (9)

with

W =
n∑

i=1

wi ;β =
n∑

i=1

1

bi
. (10)

We deduce the equilibrium water price m∗(t)

m∗(t) = py
β

(W − Q(t)) − c0 + c1H(t). (11)

3 Simplemanipulations give the irrigationwater demand function ofGisser andSanchez (1980)W = g−kpw .
Assuming m(t) = 0, we obtain g = W , k = β/py and pw the price of water. This equivalence will be used
to calibrate the model for numerical simulations.
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3 The Water Agency Constraints

We consider a management strategy of the water agency in a food security context such that
the total production generated by the n farmers has to meet a minimum production level
set by the public authorities. Since water is a limiting resource for farmers, the objective of
the water agency can be in conflict with the agricultural production objectives. This section
shows how the water market and the food security objective can be rewritten in terms of
constraints.

3.1 The Water Permit Price Constraint

Assuming that the water market is active due to a positive demand for quotas yields a positive
price for the water permit m∗(t):

0 ≤ m∗(t). (12)

This positivity condition on m∗(t) yields a state-control constraint

Q(t) ≤ W − βc0
py

+ c1β

py
H(t). (13)

By denoting the above function by QM , it implies

Q(t) ≤ QM (H(t)). (14)

The tradable water permit constraint entails a superior limit for the total water extraction
Q(t). This superior bound QM is an increasing function of the state variable H(t) in the
state-control (H, Q) space. This bound depends on the economic parameters of farmers.
Below the bound QM , pumping costs are low, which raises water demand and ensures a
positive quota price. In the opposite case, the quota price is nil and there is no demand for
quotas.

3.2 The Food Security Constraint

To deal with productive goals, the aggregate production of the agricultural sector has to
satisfy a production target

Ylim ≤ Y ∗(t), (15)

with the aggregate production Y ∗(t) = ∑n
i=1 y

∗
i (t). This production target implies a corre-

sponding amount of water quotas needed for irrigation. Since water is the only input used by
farmers, it is possible to associate to each amount of extracted water a particular amount of
production. By substituting m∗ given by Eq. (11) within q∗

i in Eq. (8), we obtain

q∗
i (t) = 1

bi

(

ai −
(
W − Q(t)

β

))

, (16)

and thus the optimal individual production becomes

y∗
i (t) = 1

2bi

⎛

⎝a2i −
(
W − Q(t)

β

)2
⎞

⎠ . (17)

Summing the individual productions y∗
i (t) in Eq. (17) yields the aggregate production

Y ∗(t) = Y − 1

2β

(
W − Q(t)

)2
, (18)
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with Y = ∑n
i=1 yi .

The aggregate production constraint Ylim ≤ Y ∗(t) implies thus

Ylim ≤ Y − 1

2β

(
W − Q(t)

)2
, (19)

which in turn entails the following bound on the water supply Q(t)

QFS ≤ Q(t), (20)

where QFS is constant and independent of the state variable

QFS = W −
√
2β

(
Y − Ylim

)
. (21)

Not surprisingly, the existence of QFS imposes that production objective Ylim cannot
exceed its maximum value Y . Moreover, the positivity of the food security constraint (ie

QFS ≥ 0) yields a minimum value: Ylim ≥ Ymin with Ymin = Y −
(
W

2
/2β

)
.

4 Viability Analysis

Taking into account the described hydro-economic model, this section shows how the two
constraints defined in the previous section imply conditions on the water extraction and the
water resource. We then consider how the water agency can implement a quota policy which
satisfies all the constraints in a dynamic context. We characterize the sustainability of the
system based on the concept of viability kernel consisting in the set of initial water table levels
for which there exists at least one quota regime that satisfies our constraints indefinitely.

4.1 The Resource Constraint

The existence of the water permit price constraint Q(t) ≤ QM (H(t)) and of the food security
constraint QFS ≤ Q(t) limits the level of the water table. Combining Eqs. (14) and (20)
gives

QFS ≤ Q ≤ QM . (22)

This yields a critical threshold on the water table

Hlim ≤ H(t), (23)

where Hlim is such that

Hlim(Ylim) = SL − py
c1β

√
2β

(
Y − Ylim

)
,

with SL = c0/c1. Substituting the value of Ymin that ensures that the food security constraint
is binding (QFS ≥ 0) implies a condition on the amount of resource threshold. It gives

Hmin = 1

c1

(

c0 − pyW

β

)

.

The value of Hmin is positive under the condition

c0 >
pyW

β
. (24)
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Equation (24) states that themarginal extraction cost of the last unit ofwater (c0) is higher than
the maximum value of marginal product (Rubio and Casino 2001).4 A violation of Condition
(24) means that the food security constraint associated with the minimum extraction is not a
binding constraint for the resource.

4.2 The Maximum Food Security Objective

Simultaneously satisfying the food security constraint (QFS ≤ Q(t)) and the equilibrium
constraint (Q(t) ≤ QR) implies

QFS ≤ QR . (25)

This condition implies that if the food security constraint is too demanding, extraction
required for the corresponding production is greater than the equilibrium recharge of the
aquifer. In this case, the water table diminishes and it is not possible to define any sustainable
water extraction. Themaximum value of production Ymax able to ensure a sustainable aquifer
management is computed with the limiting case, where the equilibrium water extraction QR

and the food security constraint QFS overlap (QFS = QR). We deduce therefore:

Ymax = Y − (W − QR)2

2β
. (26)

We can note that Ymax is below the maximum amount of production Y obtained for a nil
extraction cost. We can associate with this value Ymax an upper bound on the water table:

Hmax = 1

c1

(

c0 − py(W − QR)

β

)

.

To summarize, it turns out that Hlim lies in the interval [Hmin, Hmax] according the value
of Ylim from the interval [Ymin, Ymax].
4.3 Viability Kernel

The dynamics of the aquifer given by Eq. (1) are taken into account in combination with

1. the water permit price constraint with Eq. (14): Q(t) ≤ QM (H(t)),
2. the food security constraint with Eq. (20): QFS ≤ Q(t),
3. the resource constraint with Eq. (23): H(t) ≥ Hlim.

In an infinite horizon context, the viability kernel can be formally defined as the set of
initial situations H0 such that there exists water extraction Q(t) and resources H(t), which
satisfy the previous constraints, for all time t = 0, 1, ...∞. It can be written as

V iab = {H0|∃Q(.) satisfying (14)-(20)-(23) ∀t = 0, 1, ..,∞} .

We obtain the following proposition:5

Proposition 1 Assuming that Ymin ≤ Ylim ≤ Ymax, we obtain

• If QFS > QR then viability cannot be achieved V iab = ∅. In that case, for every initial
water table state H0, every trajectory violates the constraints at least for a period of time.

4 The authors (p.1123) derived a similar condition c0 ≥ g/k that eliminates the possibility of a corner solution
for which H ≤ 0.
5 The proof is given in the Appendix.
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QM

H
SLHlim H ′′

limH ′
lim

0

W − βc0
py

Q

Q′′
FS

QR = QFS

Q′
FS

Fig. 1 Viable cases (Q′
FS ≤ QR ) and non-viable cases (Q

′′
FS > QR ). For Q

′
FS , the viability kernel is given

by the area located above the Q′
FS line and below the QM line

• If QFS ≤ QR the viability kernel is V iab = [Hlim, SL ]where SL stands for themaximum
height of the aquifer. In that case, if and only if H0 ≥ Hlim, there exists a water quota
strategy complying with the constraints over time.

Proposition (1) shows that the viability of the quota management depends on the initial
amount of available water in the aquifer as compared to the minimum resource threshold
Hlim deduced from the amount of water extraction QFS needed to satisfy the food security
constraint given by Ylim. Two non-viable cases can occur. The first situation emerges when
the initial level of the water table H0 is lower than the tipping point of the resource state
Hlim. The second case occurs when the food production objective is too demanding. In this
case, water extraction QFS exceeds the equilibrium water extraction QR which maintains
the water table constant.

Figure 1 shows the viability kernel in the state-control (H,W ) space. It represents two
horizontal straight lines QR and QFS and an increasing linear function QM . As explained
above, QR is the equilibrium extraction level corresponding to the aquifer recharge, QFS

the food security constraint and QM the water permit constraint. The intercept of QM with
the Y-axis depends on the values of the parameters given by Condition (24). The intersection
of the two constraints QM and QR gives the critical value for the water table Hlim. The
viability domain corresponds to the area which lies above the food security constraint QFS

and below the water permit constraint QM . In this area, the viability domain allows increas-
ing or decreasing water dynamics depending on whether the system is above or below the
equilibrium water extraction QR .

Figure 1 considers different values for the food constraint. For a food target Q′′
FS higher

than QR , the recharge of the aquifer cannot compensate the extraction. The water table will
constantly decline as shown by the arrows pointing left. Starting from a high level of water
table, water will become scarce at first. But the quota price will constantly decrease with the
depletion of the water stock until water is no longer scarce. At a low water table level below
H ′′
lim resulting in high pumping costs, the water quota market is no longer economically

relevant. The viability kernel is empty. The threshold stock H ′′
lim required to satisfy the food

target Q′′
FS is too high with respect to the equilibrium water extraction. On the contrary,

for a food target Q′
FS lower than QR , the water table will constantly rise. Starting from an

initial stock located below the threshold H ′
lim is not a viable case due to high pumping costs.

When the water table goes beyond H ′
lim, the water table can rise or fall depending on whether
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the viable quota implemented by the water agency is above or below the equilibrium water
extraction QR . The quota price will remain positive in this area due to the existence of a
positive water demand. For Q′

FS the viability kernel is thus given by the area located above
the Q′

FS line and below the QM line. If, by allowing high water extractions, the water table
reaches its critical value H ′

lim, then the water agency will be constrained by the water quota
associated with Q′

FS . The limit case QFS = QR corresponds to the maximum amount of
agricultural production Ylim = Ymax.

The next section derives for the conditions on the water quotas which ensure that the water
table remains above its critical value Hlim and belongs to the viability kernel.

4.4 The Gisser-Sanchez Effect Revisited

The viable controls have to maintain the water table of the aquifer within the viability kernel
using the dynamic programming structure depicted inDoyen and Lara (2010). In other words,
the viable water quotas Q(t) set by the water agency have to comply with the additional
intertemporal condition Hlim ≤ H(t + 1). We assume that at each period farmers buy the
amount of quotas they need to maximise their annual rent for the equilibrium quota price.
The viable water quotas are derived from Proposition (1). Using Eq. (1), we obtain

Q(t) ≤ QR + AS

(1 − μ)
(H(t) − Hlim) . (27)

Denoting by QD the above function, the dynamic context of the resource threshold yields

Q(t) ≤ QD(H(t)). (28)

This dynamic constraint leads to a superior bound for thewater extractiongivenbyQD(H(t)).
This superior limit is an affine and increasing function of the state variable H(t).

The comparison between the slopes of QD and QM shows 6 that the dynamic viability
constraint QD is binding and reduces the viability domain under the following condition:

c1(1 − μ)(py/β)

AS
> 1. (29)

Condition (29) refers to the much-debated “Gisser-Sanchez Effect” which states that optimal
groundwater regulation by a regulator offers few benefits compared to the open access situa-
tion. The difference between no control and optimal control by a central regulator is nil when
the left-hand side of Eq. (29) is sufficiently small (see equation (30) in the Gisser-Sanchez
model). This occurs when the product of the aquifer’s area and the storage coefficient is
large and the slope of the water demand is small (k = py/β) (Koundouri 2004). Within
the context of groundwater markets, a small value means that the water agency is not tem-
porally constrained in setting viable quotas. However, when Condition (29) is binding, the
“Gisser-Sanchez Effect” no longer holds and regulation matters. In our viability framework,
this shows that the water agency is dynamically constrained in its water quota setting at each
period. Numerical illustrations of a real case study confirm that such restrictions on the quota
supply can exist.

We are then able to specify the viable quotas QViab associatedwith the viable water tables.

Proposition 2 Considering that QFS ≤ QR, the viable quotas associated with V iab =
[Hlim, SL ] are

QViab = [QFS,min(QM , QD)] .

6 See Appendix.
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�

�

QR = QFS

0

QQ M

QD

H
SLHlim

Fig. 2 Viablewater quotaswhen thequota dynamic constraint is active under the condition
c1(1−μ)(py/β)

AS > 1
and when QFS = QR

Several quota policies may exist, implying different strategies and trade-offs between the
resource and the economic constraints. Low amounts of quota benefit the resource and can
even increase it when QFS < QViab < QR . On the contrary, high quotas closed to the
minimum between QM and QD promote more water extraction and decrease the water table.

Figure 2 displays the viable quota policies when the viability kernel is not empty and
when Condition (29) holds in the state-control (H,W ) space. The dynamic constraint QD

is represented by an increasing linear function with a negative intercept with the Y-axis for
Hlim >

(1−μ)QR
AS . This configuration also satisfies Condition (24). This dynamic constraint

QD on the quota setting shows that the viable quota domain is reduced. In other words, there
is less leeway to manage the aquifer, as shown in Fig. (2). When Condition (29) is satisfied,
QD becomes active and the viable quota domain lies within the area between QD and QFS .
The reduced viable quota domain is the area between QM and QD . When Condition (29) is
not active, the domain of viable quota policies coincides with the viability kernel. Based on
numerical examples, the next section will show how both configurations are possible.

5 Numerical Illustration

The model is numerically tested on the Western La Mancha aquifer located in Spain. This
aquifer has been studied in several papers by Esteban and Albiac (2011, 2012) and recently
by Esteban and Dinar (2016). It supplies around 90% of the irrigation water used in that
region. These papers are also based on the Gisser-Sanchez model. We consider the following
values (from Esteban and Dinar 2016):

Parameters Description Units Value

μ Return flow rate Unitless 0.2
R Natural recharge Mm3 360
AS Aquifer area times storativity Mm3/m 126
c0 Pumping costs intercept e/Mm3 320,000
c1 Pumping costs slope e/Mm3m 500
H0 Initial water table m 640
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The Gisser-Sanchez model specifies an aggregate linear water demand W = g − kpw

where g and k stand for the water demand intercept and slope with g, k > 0 (e/Mm3) and
pw the water price (in e/Mm3). We need to link the coefficients of the aggregate irrigation
water demand to the parameters of the water input production function for farmers. By
identification with our model, and in particular Eq. (9) with m(t) = 0, the intercept of
the demand-for-water function is g = W and the slope of the demand-for-water function is
k = β/py with W and β given by Eq. (10).

Esteban andDinar (2016) estimated different irrigationwater demand functions.We select
two water demands denoted by WD1 and WD2 (and corresponding to B1 and B3 in Esteban
andDinar 2016)which illustrate the two configurations of our theoreticalmodelwith n = 100
farmers and py = 1.5.

Parameters Description WD1 Value WD2 Value

g Water demand intercept 4400.73 726.71
k Water demand slope 0.097 0.7272
a Production coefficient 30,245.57 666.21
b Squared production coefficient 687.28 91.67

Heterogeneity between the farmers is introduced through the values of bi as a uniform
random variable over the interval [b ∗ (1 − δ), b ∗ (1 + δ)] with a dispersion rate δ =
10%.

Based on the parameters concerning the first water demand function (WD1), it turns
out that Condition (29) is not satisfied, meaning that the dynamic viability constraint
QD is not binding. At each period, the water agency can implement a quota policy that
belongs to the viable quota domain (above the QFS line and below the QM line). Fig-
ure 3 displays the time path of the water table H(t), the water quotas Q(t) and the
quota price m(t). We assume that the water agency sets the food security target QFS =
419.64 Mm3 to achieve the production target Ylim = 1205 tons. Since QFS ≤ QR ,
the viability kernel is not empty and implies a critical value for the water table equal
to Hlim = 551.90m. Figure 3(a, c, e) shows that the aquifer tends toward its threshold
value Hlim only after 50 years but always remains above it. During that period the amount
of water extracted remains higher than the equilibrium recharge QR . Some viable quo-
tas start at 2, 400 Mm3 and decrease slowly to QFS . The path of the quota price follows
the same pattern, starting at a high price when the water table is high (about 24000 e),
decreasing afterwards, but remaining positive (about 200 e). The fall in the water table
raises the pumping cost of the farmers, which decreases the water demand and the quota
price.

To show the impact of the dynamic viability constraint QD on the quota setting, we
consider a decrease in the coefficient b from 687.28 to 210.28. Such a change implies a more
elastic water demand with new coefficients g = 14383.11 and k = 0.317. To achieve the
same production target Ylim, the corresponding security constraint is given by QFS = 418.52
Mm3, implying a threshold for the water table equal to Hlim = 557.85m. For theses values,
Condition (29) is now satisfied, meaning that the viable quota domain is reduced. Somewater
quotas implemented by the water agency decrease to 7, 000 Mm3 in the first years as shown
in Fig. 3(b, d, f). H(t) and Q(t) converge towards their threshold values significantly earlier
compared to the previous case, but remain above them.
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Fig. 3 Water Demand 1: Trajectories of the water table H(t), the quotas Q(t) and the quota price m(t).
aWater table H(t). bWater table H(t). c Quotas Q(t). d Quotas Q(t). e Price quota m(t). f Price quota m(t)

The analysis of the second water demand function (WD2) shows that Condition (29)
is satisfied, implying a binding dynamic viability constraint QD . When QFS = 441.93
Mm3 is lower than QR , the threshold value Hlim is equal to 639.22 m and is closed to
its initial value H0. This reduces the set of viable quotas the water agency can imple-
ment. Figure 4 displays the associated viable trajectory for the water table H(t), the
quotas Q(t) and the quota price m(t). In the first years, water extractions are limited
to lower values Q = 510 Mm3 and converge fastly to their threshold values in few
periods. The water table remains above its threshold value, maintaining a positive quota
price.
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6 Conclusion

This paper examines the problem of groundwater management in irrigated agriculture. A
water agency is assumed to allocate a total amount of water to farmers using tradable permits.
Our contribution to the existing literature (see Latinopoulos and Sartzetakis 2015) is to
emphasize how the water agency deals with the constraint of food security defined as an
objective of a minimum amount of agricultural production for the whole agricultural sector.
In a dynamic hydro-economic model, we determine the feasibility conditions under which
the water agency ensures the joint sustainability of the resource and the agricultural activity.
The paper uses the viability approach to deal with constraints in a dynamic setting.

Our results show that the food security constraint leads to a threshold being imposed on
the water resource. When the food security constraint is too demanding with respect to the
net recharge, or when the initial level of the water table is below the threshold value, the
over-exploitation of the aquifer leads to its depletion. In the other cases, the water agency
can achieve sustainability objectives which simultaneously account for water conservation,
economic efficiency and maintenance of agricultural activity. However the paper also shows
how the food security constraint impacts the design of water policies in a tradable quota
market and revisits the well-known Gisser-Sanchez Effect (Koundouri 2004; Tomini 2014).
The analytical condition behind this effect is the same which determines whether or not the
water agency is dynamically constrained in the setting of the quota supply.Based onnumerical
examples related to the Western La Mancha aquifer (Esteban and Albiac 2011; Esteban and
Dinar 2016), our results show that the set of viable quotas can be strongly reduced.

Future extensions could be considered. A first one consists in introducing an individual
constraint on farmers with guaranteed payoffs. By dealing with an aggregate food security
objective together with individual constraints for heterogenous farmers, the water agencywill
address equity and acceptability issueswhen setting the quota supply and the initial allocation
of thewater permits (Ballestero et al. 2002). A second extension relies on the introduction of a
stochastic rate of the natural recharge. de Frutos et al. (2014) showed that such an uncertainty
can create incentives for the water agency to allow more extraction in the long run than in the
short run. It suggests the use of robust viability theory to address dynamical control problems
under constraints with uncertainty (Doyen and Lara 2010; Regnier and Lara 2015).
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Agency (ANR) in the frame of the Investments for the future Program, within the Cluster of Excellence COTE
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Appendix

Optimality Conditions

The Lagrangian corresponding to the problem (4) with wi ≥ 0 and qi ≥ 0 is

L = πi (H, wi ) − mqi + λi (qi − wi )

The Kuhn-Tucker conditions are

L ′
wi

= ∂πi (H, wi )

∂wi
− λi ≤ 0; (=0 if wi > 0),

L ′
qi = −m + λi ≤ 0; (=0 if qi > 0),

λi ≥ 0, λi (qi − wi ) = 0.
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If λi = 0, the constraint does not bind then w∗
i is solution of ∂πi (H, wi ) /∂wi = 0 and

qi = 0. Otherwise λi > 0 implies a positive quota price m > 0. It shows that the constraint
binds qi = wi and

∂πi (H,qi )
∂qi

= m which gives Eq. (5).

Proof of the Viability Kernel

Proof Consider the dynamics

H(t + 1) = H(t) + 1 − μ

AS
(QR − Q(t)) ,

with QR = R
1−μ

.

We first show that QFS ≤ QR implies V iab = [Hlim, SL ].
Assume that H0 ≥ Hlim, choose Q(t) = QFS then

H(t) + 1 − μ

AS
(QR − Q(t)) = H(t) + 1 − μ

AS
(QR − QFS) ≥ H(t) ≥ Hlim.

Hence [Hlim, SL ] is viable and V iab = [Hlim, SL ].
Now if QFS > QR , we show by forward induction that ∀H0 ≥ Hlim

H(1) = H(0) −
(
1 − μ

AS

)

(QFS − QR)) ,

H(2) = H(0) − 2

(
1 − μ

AS

)

(QFS − QR)) ,

H(t) = H(0) − t

(
1 − μ

AS

)

(QFS − QR)) .

Hence ∃t∗ such that H(t∗) < Hlim, it implies that V iab = ∅.
Dynamic Constraint QD

The constraint on the state variable Hlim ≤ H(t + 1) implies

Hlim ≤ H(t) + R

AS
− (1 − μ)

AS
Q(t),

⇐⇒ Q(t) ≤ QR − AS

(1 − μ)
Hlim + AS

(1 − μ)
H(t).

By denoting QD = QR − AS
(1−μ)

Hlim + AS
(1−μ)

H(t), it gives Q(t) ≤ QD(H(t)). We look
at the conditions depending on the sign of QM − QD under which this dynamic constraint
is binding and reduces the viability kernel. By definition, QD(Hlim) = QR and since Q is
bounded by QR , it implies that for H = Hlim

QM (Hlim) < QD(Hlim).

It yields

W − QR <
β

py
(c0 − c1Hlim).

The expression of QM − QD is given by

QM − QD = W − QR − βc0
py

+ c1β

py
H − AS

1 − μ
(H − Hlim).
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Using the two previous expressions gives

QM − QD <
β

py
(c0 − c1Hlim) − βc0

py
+ c1β

py
H − AS

1 − μ
(H − Hlim),

QM − QD <
c1β

py
(H − Hlim) − AS

1 − μ
(H − Hlim).

When H > Hlim the condition ensuring QM − QD > 0 is

c1(1 − μ)(py/β)

AS
> 1,

and corresponds to Eq. (29) in the text.
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