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A B S T R A C T

Accurate models of wildlife population dynamics are needed to assess the causes of global biodiversity decline.
In this paper, new parameter-varying PDE models are proposed with an original methodology for parametric
estimation from ecological data. The model structure makes it possible to introduce the environmental
heterogeneity which can characterize global changes. Particular attention was paid to the implementation
of the identification procedure: true parametric sensitivity functions in the optimization algorithm, a Galerkin
method with a proper orthogonal decomposition for the PDE solution and a pre-estimate to initialize the
iterative procedure. The tools are validated on simulation data and then applied to a real application modelling
the impact of climate change and agricultural intensification on the population of a passerine bird.
1. Introduction

Biodiversity is currently showing alarming rates of decline (IPBES,
2019). IUCN (2022) gives percentage estimates of threatened species
for the amphibian class of 41%, for reef-forming corals of 36%, for
conifers of 34%, for mammals of 27%, for reptiles of 21%... The bird
class is, for instance, a good indicator of global biodiversity loss (Inger
et al., 2014; Stanton et al., 2018) and many surveys make it possible to
measure this decline. IUCN (2022) estimates that 13% of bird species
are threatened. Rosenberg et al. (2019) report population losses across
much of the North American avifauna over 48 years. Similarly, Keller
et al. (2020) suggest that major changes in the distribution of European
breeding birds over the last 30 years are due to climate change and/or
agricultural intensification. To deal with such a dramatic evolution of
wildlife, predicting the trends of population dynamics requires accurate
models if we are to provide management practices, at local and global
scales, and implement public policies in order to halt biodiversity loss.

To address this challenge, ecologists have developed many models.
Two types of models co-exist in the literature on ecology and biol-
ogy conservation. On one hand, the phenomenological models, and
on the other hand the mechanistic ones (Merow et al., 2011; Hefley
et al., 2017), i.e. a black-box models class and a grey-box models
class, respectively. The phenomenological models, such as the ecolog-
ical niche models (Melo-Merino et al., 2020), are statistical models
that link the responses of species variables to explicative variables
representing, for instance, landscape or climate changes. Easy to han-
dle, they give the spatial and temporal distribution of the considered
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species. Unfortunately, their long-term predictive ability is limited
to the domain of calibration data and extreme behaviours are not
modelled (DeAngelis and Yurek, 2016; Hefley et al., 2017). The mech-
anistic models are derived from ecological theories. They are based
on dynamical equations such as ordinary differential equations (ODEs)
which characterize the temporal dynamics with better long-term pre-
dictive ability. The mechanistic models are based on the living, but
they are restricted to phenomena known and modelled by theory. The
most popular are: Malthus model, Verhulst model or Lotka–Volterra
model. These ODE models are typically population models and have
been applied, for example, to French bird populations in Mouysset
(2014) and Mouysset et al. (2016). To complete this dynamic issue,
spatial considerations can be integrated into the modelling framework
by considering metapopulation models (Levin, 1976; Mouysset et al.,
2019; Guillet and Mouysset, 2022).

Mechanistic models based on partial differential equations (PDEs)
capable of simultaneously characterizing temporal and spatial dynam-
ics have been proposed for a long time (Fisher, 1937; Skellam, 1951).
Moreover, Levin (1976) proves that the metapopulation modelling
leads to Fisher’s PDE by considering a continuum of patches. Since
then, the models based on PDEs are widely mentioned in the litera-
ture with fixed parameters (Holmes, 1993; Lewis and Kareiva, 1993;
Holmes et al., 1994; Okubo and Levin, 2001), but also with variable
parameters (Shigesada et al., 1979; Okubo, 1986; Belgacem and Cosner,
1995; Cantrell and Cosner, 2001, 2003; Roques et al., 2016). However,
vailable online 11 October 2023
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today there are very few tools for parametric estimation of PDE models
from ecological data and these models are little used in practice. Let us
cite (Bateman et al., 2015).

Nevertheless, the use of the PDE models seems promising. DeAngelis
and Yurek (2016) classify the PDE models among spatially explicit
models and compares them to the spatially implicit models (phe-
nomenological models). They conclude their review as follows ‘we are
onfident that the power of spatially explicit models will be transformative
n ecology over the next two decades and will lead to the marriage of basic
nd applied ecology ’. To confirm this conclusion, Hefley et al. (2017), for
nstance, show the performances of mechanistic spatio-temporal models
ompared to phenomenological regression-based models for forecasting
patio-temporal processes.

Some tools for the parametric estimation of PDE models from eco-
ogical data are developed. To take into account the probabilistic and
echanistic aspects, some tools are based on hierarchical Bayesian
odels (Wikle, 2003). For tricky numerical implementations, PDE solu-

ions are usually approximated with finite-difference methods (Hefley
t al., 2017). An example of the use of such models and implementa-
ions is given in Louvrier et al. (2020) which estimates a PDE model to
xplain and forecast the colonization of wolves in the South-Eastern of
rance.

In this paper, our main contribution is the parametric estimation
f a parameter-varying PDE model. The proposed methodology is an
mplementation for handling the partial derivative equations and es-
imating the parameters of the PDE model in the challenging context
f ecological applications. Particular care is taken to leverage data to
ollect all the information about ecological processes. The structure
f the PDE model can be adapted to fit the deterministic part of the
ata and to represent the different effects which cause the population
o evolve. The variable parameters make it possible to introduce en-
ironmental heterogeneity (in terms of agricultural intensification or
lobal warming, for instance) to model the impacts of global changes
n the dynamics of wildlife populations. We describe more broadly
methodology introduced by Ouvrard et al. (2019) to apply to the

opulation of a passerine bird on the scale of France.
First, as mentioned above, special attention is paid to the imple-

entation of parametric estimation algorithms. In fact, with ecological
pplications, the observation data are poor and sparse. The number
f time samples is of the order of ten or twenty time points, some-
imes less. In our algorithm, the optimization procedure, that yields
he estimated parameters, is based on the true parametric sensitivity
unctions calculated from the model equation rather than on numerical
pproximations of them (Knudsen, 1994). Even though the estimation
lgorithm is based on the minimization of the quadratic criterion
f residuals, the implementation can be extended to a hierarchical
ayesian framework and to a maximum likelihood estimation.

Second, the PDE solution is an approximate solution obtained from
he Galerkin method (Polis et al., 1973) based on an orthogonal decom-
osition. The orthonormal basis functions used are built empirically
rom data by using a proper orthogonal decomposition (Newman,
996a,b) which leads to the best approximation in the least-squares
ense.

Third, like any optimization problem, an initial parameter vector
ust be chosen. Generally, in ecological applications, we lack prior

nowledge about the PDE model parameters. Therefore, we propose
first estimate based on partial moments introduced in Trigeassou

1987) and Ouvrard and Trigeassou (2011). As with any optimization
rocedure, global convergence cannot be guaranteed. But we propose
ome practical implementations to try to obtain the global optimum.

Other contributions of this paper are the validation of the tools with
ealistic simulation data and the design of an accurate simulator of
DE models with varying parameters for prediction. To produce these
ealistic data, the simulation protocol reproduces data similar to a real
pplication on the French population of Yellowhammers Emberiza cit-
inella and real data provided by the national French Breeding Bird Sur-
2

ey (Jiguet et al., 2012), by the Worldclim database (Fick and Hijmans, d
2017) and by the CORINE Land Cover database (Büttner and Kosztra,
2017). The simulator allows testing of the convergence of the para-
metric estimation towards the true parameters. Finally, we compared
the fitting performance of the proposed parameter-varying PDE model
and the popular generalized linear model (GLM) model (McCullagh and
Nelder, 1983) on these real data.

The paper is organized as follows. Section 2 describes the material
and methodology with the parameter-varying PDE model with different
effects. The proposed parametric estimation method is detailed in
Section 3 for a general formulation of the PDE. The data considered,
the validation of the methodology and the application to real data are
given in Section 4. A discussion of the results is presented in Section 5.
Section 6 concludes this paper.

2. Material and methods

2.1. A methodology to model the global change impacts on wildlife

In this paper, a methodology is proposed to model the impacts of
global changes, such as land use or climate evolution, on wildlife. This
procedure follows these main steps:

• Datasets and data formatting
The approach is based on spatio-temporal data on the studied
population and its environment. It requires a formatting step to
produce a variable which characterizes the environmental hetero-
geneity. A pre-processing stage facilitates the implementation of
the parametric identification step.

• PDE structure selection
The PDE structure allows the consideration of different effects:
diffusion, advection and reaction. The choice of the structure can
be made on the basis of expertise or traditional criteria.

• Parametric estimation
This step consists of an iterative procedure to estimate the PDE
parameters from datasets. A POD-Galerkin method gives an ap-
proximated solution of the PDE and an optimization procedure
yields an estimate of the parameters.

• Simulation for evaluation and prediction
A numerical tool is developed to simulate PDEs with varying pa-
rameters. In the present paper, this simulator is used to evaluate
the previous steps. However, its ultimate aim is to predict future
population evolution.

2.2. Datasets and data formatting

The performance of the proposed methodology mainly depends on
the richness of the datasets. Two datasets are necessary: data on the
population studied (density or counting) and data on the phenomena
that impact the population. The data, collected in space and time,
must be sufficiently well sampled to describe the spatial and temporal
dynamics.

Denote the population measurement dataset by
{

𝑢∗(𝑥𝑖, 𝑦𝑗 , 𝑡𝑘)
}

col-
ected on points of coordinates (𝑥𝑖, 𝑦𝑗 ) at the instants 𝑡𝑘. In practice,
he distribution of population measurement data in time and space is
ot uniform.

To facilitate the implementation of the identification and simulation
teps, a pre-processing tool is applied to give a popu-
ation dataset uniformly sampled and denoted {𝑢(𝑖 𝑑𝑥, 𝑗 𝑑𝑦, 𝑘
𝑑𝑡)} 𝑖=0,…,𝑁𝑥; 𝑗=0,…,𝑁𝑦; 𝑘=0,…,𝑁𝑡

. 𝑑𝑥, 𝑑𝑦 and 𝑑𝑡 are, respectively, longi-
udinal, latitudinal and temporal steps.

The parameters of the proposed PDE models are variable to char-
cterize the environmental heterogeneity. For instance, during a pro-
ressive degradation of a natural habitat, a population moves in the
eighbourhood by a phenomenon of diffusion, even leaves an area
y a phenomenon of advection, or else gradually disappears with a

ecreasing reaction.
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Fig. 1. Diffusion effect after a few time samples.

Therefore, the data on the phenomena that impact the popula-
tion must be synthesized within an index. This latter varies in space
and time to act on the different effects of the PDE and to represent
a movement, a leak, a concentration, a disappearance... This index,
denoted 𝐻(𝑥, 𝑦, 𝑡), is called scheduling variable in the LPV models
literature (Toth, 2010).

The index 𝐻(𝑥, 𝑦, 𝑡) can be determined from an expert’s assessment
or by using standard tools in an ecological study like principal com-
ponent analysis, generalized linear model or other niche models. Data
are often available in a geographic information system (GIS) format,
e.g. WorldClim climate data or CORINE Land Cover data. Hence, it is
easy to format the index {𝐻(𝑖.𝑑𝑥, 𝑗.𝑑𝑦, 𝑘.𝑑𝑡)} on the same population
grid.

2.3. Parameter-varying PDE models

The parameter-varying PDE model is defined by
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝜕

𝜕𝑥

[

𝐷𝑥(𝐻)
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥

]

+ 𝜕
𝜕𝑦

[

𝐷𝑦(𝐻)
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦

]

−𝑤𝑥(𝐻)
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥
−𝑤𝑦(𝐻)

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑦

+𝛽1(𝐻)𝑢(𝑥, 𝑦, 𝑡) − 𝛽2(𝐻)𝑢2(𝑥, 𝑦, 𝑡) ,

(1)

where 𝑢(𝑥, 𝑦, 𝑡) is a population or a density of individuals at spatial coor-
dinates (𝑥, 𝑦) and time 𝑡. The varying parameters 𝐷𝑥(𝐻), 𝐷𝑦(𝐻), 𝑤𝑥(𝐻),
𝑤𝑦(𝐻), 𝛽1(𝐻) and 𝛽2(𝐻) are parametric functions which can be chosen
to adapt with the phenomena to be modelled. The parameters contained
in these parametric functions will be estimated with the identification
procedure described in the following section from datasets presented in
the previous section.

Such PDE models make it possible to represent both temporal
and spatial dynamics. Depending on the PDE structure considered,
three different effects can be modelled: diffusion, advection and re-
action (Holmes et al., 1994; Okubo and Levin, 2001). The varying
parameters with the scheduling variable 𝐻(𝑥, 𝑦, 𝑡) take into account the
environmental heterogeneity.

Remark 1. The structure of the parameter-varying PDE model (1) can
be modified to adapt to changes in the population. For the particular
choice without reaction, i.e. for 𝛽1(𝐻) = 0 and 𝛽2(𝐻) = 0, Eq. (1)
becomes non-conservative. In this case, the advection part

−𝑤𝑥(𝐻)
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥
−𝑤𝑦(𝐻)

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑦

(2)

must be substituted by

−
𝜕(𝑤𝑥(𝐻)𝑢(𝑥, 𝑦, 𝑡))

𝜕𝑥
−

𝜕(𝑤𝑦(𝐻)𝑢(𝑥, 𝑦, 𝑡))
𝜕𝑦

(3)

to maintain a conservative form.
3

Fig. 2. Advection effect for different values of drift velocities 𝑤𝑥 and 𝑤𝑦.

2.3.1. The diffusion effect
The diffusion effect in PDE models characterizes the Brownian

random motion of an individual. For instance, consider an initial pop-
ulation 𝑢(𝑥, 𝑦, 0) which is zero everywhere except in a square in the
centre of the study area where the population is one, as shown in the
plot at the top left of Fig. 1. The simulation of the following PDE

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑡

= 𝐷0

(

𝜕2𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑥2

+
𝜕2𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦2

)

(4)

with a diffusion coefficient 𝐷0 = 1, presents an evolution of the
population for the first time samples as drawn in Fig. 1.

2.3.2. The advection effect
The advection effect reflects the movement of the population linked,

for instance, to a deterioration of habitat or a change in climatic
conditions. To illustrate it, consider the simulation of the following PDE
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝑤𝑥

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑥

+𝑤𝑦
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦
(5)

with an initial population 𝑢(𝑥, 𝑦, 0) given by a Gaussian centred on the
middle of the study area. Fig. 2 shows the simulation for three different
cases of drift velocities 𝑤𝑥 and 𝑤𝑦.

2.3.3. The reaction effect
In the PDE model (1), the reaction is a logistic growth reaction.

However, other reactions can be used.
To illustrate the possible reaction parts, consider the PDE model

at a point of spatial coordinates (𝑥0, 𝑦0) and visualize the reactions
by simulating ordinary differential equations. The three most popular
reactions in population dynamics are:

• the exponential growth reaction (Malthus model)
𝑑𝑢(𝑥0, 𝑦0, 𝑡)

𝑑𝑡
= 𝑟𝑢(𝑥0, 𝑦0, 𝑡), (6)

• the logistic growth reaction (Verhulst model)
𝑑𝑢(𝑥0, 𝑦0, 𝑡)

𝑑𝑡
= 𝑟𝑢(𝑥0, 𝑦0, 𝑡)

(

1 −
𝑢(𝑥0, 𝑦0, 𝑡)

𝐾

)

, (7)

• the Allee effect
𝑑𝑢(𝑥0, 𝑦0, 𝑡)

𝑑𝑡
= 𝑟𝑢(𝑥0, 𝑦0, 𝑡)
(

1 −
𝑢(𝑥0, 𝑦0, 𝑡)

𝐾

)(

𝑢(𝑥0, 𝑦0, 𝑡) − 𝐴
𝐾

)

,
(8)

where 𝑟 is the rate of increase of the population 𝑢, 𝐾, the carrying
capacity and 𝐴, the critical density.

Figs. 3, 4 et 5 present the simulations of these three kinds of
reaction.
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Fig. 3. Simulations of the Malthus model (6) with 𝑟 = 0.1 and 𝑟 = −0.5.

Fig. 4. Simulations of the Verhulst model (7) with 𝑟 = 0.5, 𝐾 = 0.1 and 𝐾 = 2.

Fig. 5. Simulations of the Allee effect (8) with 𝑟 = 1.5, 𝐾 = 2, 𝐴 = 0.95 and 𝑟 = −0.05,
= 0.2, 𝐴 = 1.01.

.3.4. The contribution of the varying parameters
The proposed PDE models present varying parameters, i.e. 𝐷, 𝑤𝑥,
, 𝑟, 𝐾 and 𝐴 vary with respect to the index or the scheduling variable
4

𝑦

(𝑥, 𝑦, 𝑡). This index allows the taking into account of environmen-
al heterogeneity that largely improves the modelling. The value of
(𝑥, 𝑦, 𝑡) is equal to 1 for the favourable area for the considered species

r 0 for the unfavourable area.

.4. Parameter-varying PDE simulator

An accurate simulator of the parameter-varying PDE (1) is needed to
redict the future evolution of the population. Moreover, the validation
f the methodology proposed in this paper requires precise simulation
ata to show the convergence towards the true parameters. The sim-
lator proposed in this section will also be used to validate our tools
ith realistic simulation data in Section 4.2.1.

The simulator is based on a finite difference method. The nonlinear
art of the PDE (1) is considered via the splitting method (Havasi et al.,
001). More precisely, the principle is to split the simulation of the
riginal nonlinear PDE into two iterative simulation steps: the simu-
ation of a linear PDE with the effects of advection and diffusion and
he simulation of a nonlinear ODE with the logistic growth reaction.
hus, the time domain is sampled with a very fine interval and, for the
th time interval denoted [𝑡𝑛, 𝑡𝑛+1], the simulations are carried out as
ollows:

1. From an initial population 𝑢1(𝑥, 𝑦, 𝑡𝑛) = 𝑢(𝑥, 𝑦, 𝑡𝑛), simulate the
following PDE:
𝜕𝑢1(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝜕

𝜕𝑥

(

𝐷𝑥(𝐻)
𝜕𝑢1(𝑥, 𝑦, 𝑡)

𝜕𝑥

)

+ 𝜕
𝜕𝑦

(

𝐷𝑦(𝐻)
𝜕𝑢1(𝑥, 𝑦, 𝑡)

𝜕𝑦

)

−𝑤𝑥(𝐻)
𝜕𝑢1(𝑥, 𝑦, 𝑡)

𝜕𝑥
−𝑤𝑦(𝐻)

𝜕𝑢1(𝑥, 𝑦, 𝑡)
𝜕𝑦

(9)

to obtain 𝑢1(𝑥, 𝑦, 𝑡𝑛+1).
2. From an initial population 𝑢2(𝑥, 𝑦, 𝑡𝑛) = 𝑢1(𝑥, 𝑦, 𝑡𝑛+1), simulate the

following ODE:
𝜕𝑢2(𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝛽1(𝐻(𝑥, 𝑦, 𝑡))𝑢2(𝑥, 𝑦, 𝑡) − 𝛽2(𝐻(𝑥, 𝑦, 𝑡))𝑢22(𝑥, 𝑦, 𝑡) (10)

to get 𝑢(𝑥, 𝑦, 𝑡𝑛+1) = 𝑢2(𝑥, 𝑦, 𝑡𝑛+1), the solution of the PDE (1) at
the instant 𝑡𝑛+1.

For the first step, Eq. (9) is simulated by applying the Crank–
Nicolson scheme (Crank and Nicolson, 1996) which is an average
between explicit Euler and implicit Euler schemes. In the second step,
Eq. (10) is simulated by using the explicit Euler method to obtain the
simulated population 𝑢(𝑥, 𝑦, 𝑡). Full details of both implementations are
given in Appendices A and B.

3. Parametric estimation

3.1. Parameter-varying PDE identification in a particular context

The main issue is to estimate parameters from datasets in the
difficult context of wildlife population dynamics: a small number of
time samples, a spatial domain given by a map, an excitation given
by the initial conditions 𝑢(𝑥, 𝑦, 0), a lack of prior knowledge about
parameters and measured data not uniformly distributed in space and
time which requires a kriging pre-processing.

To deal with this problem, an iterative parametric estimation proce-
dure is proposed with a Levenberg–Marquardt algorithm which concen-
trates the properties of the gradient descent algorithm and the Newton
algorithm. To limit the computation time, an approximate solution of
the PDE based on the Galerkin method is used. To retain all information
contained in the data, a proper orthogonal decomposition yields the
orthonormal basis functions used in the Galerkin method. Finally, a tool
based on a least-squares estimate initializes the iterative procedure and
advice is given to stop the procedure.
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9)
3.2. Iterative parametric estimation procedure

Let us consider a measured population with a uniform sampling and,
for simplicity, let us denote by 𝑢(𝑖, 𝑗, 𝑘) a measure of the given sampled
dataset {𝑢(𝑖 𝑑𝑥, 𝑗 𝑑𝑦, 𝑘 𝑑𝑡)}𝑖=0,…,𝑁𝑥; 𝑗=0,…,𝑁𝑦; 𝑘=0,…,𝑁𝑡

.
In the PDE model (1), the parameters can vary with respect to

he scheduling variable 𝐻(𝑥, 𝑦, 𝑡) with different formulations to adapt
o the phenomena impacting the population according to the studied
pplication. In the present section, let us consider varying parameters
iven by

∙(𝐻) =
𝑛𝐷∙
∑

𝑛=0
𝐷∙𝑛𝐻

𝑛(𝑥, 𝑦, 𝑡),

∙(𝐻) =
𝑛𝑤∙
∑

𝑛=0
𝑤∙𝑛𝐻

𝑛(𝑥, 𝑦, 𝑡),

𝛽∙(𝐻) =
𝑛𝛽∙
∑

𝑛=0
𝛽∙𝑛𝐻

𝑛(𝑥, 𝑦, 𝑡),

(11)

with 𝑛𝐷∙
, 𝑛𝑤∙

and 𝑛𝛽∙ , the polynomial orders, and 𝐷∙𝑛 , 𝑤∙𝑛 and 𝛽∙𝑛 , the
arameters to be estimated.

The parameter vector 𝜽 ∈ R𝑁𝜃 given by

=
[

𝐷𝑥0 …𝐷𝑥𝑛𝐷𝑥
𝐷𝑦0 …𝐷𝑦𝑛𝐷𝑦

𝑤𝑥0 …𝑤𝑥𝑛𝑤𝑥

𝑤𝑦0 …𝑤𝑦𝑛𝑤𝑦
𝛽10 … 𝛽1𝑛𝛽1

𝛽20 … 𝛽2𝑛𝛽2

]⊤ (12)

s estimated with an iterative procedure by minimizing the quadratic
riterion

(𝜽𝑖𝑡𝑒𝑟) =
𝑁𝑡
∑

𝑘=0

𝑁𝑦
∑

𝑗=0

𝑁𝑥
∑

𝑖=0
(𝑢(𝑖, 𝑗, 𝑘) − �̂�(𝑖, 𝑗, 𝑘))2 , (13)

here �̂�(𝑖, 𝑗, 𝑘) is the model and 𝜽𝑖𝑡𝑒𝑟 is the parameter vector at the
𝑡𝑒𝑟-th iteration.

The parametric estimation procedure repeats iteratively the follow-
ng two steps from an initial vector 𝜽0 and until convergence

• approximate a solution of (1) with �̂�(𝑖, 𝑗, 𝑘) based on a proper
orthogonal decomposition and the Galerkin method described in
Sections 3.3 and 3.4,

• compute a new parameter vector 𝜽𝑖𝑡𝑒𝑟+1 with a Levenberg–
Marquardt algorithm which minimizes the criterion (13) as pre-
sented in Section 3.5.

To deal with the problem commonly encountered in ecological
pplications of a lack of prior knowledge of the parameters and of ini-
ialization of the iterative procedure, an estimator based on 3D partial
oments is proposed in Section 3.6 to provide the first estimation 𝜽0.

.3. Proper orthogonal decomposition

The orthonormal basis functions {𝜙𝑛(𝑥, 𝑦)}𝑁𝑛=1 used in the Galerkin
ethod (see Section 3.4) are produced with the proper orthogonal
ecomposition which consists of generating the following empirical
ovariance data matrix

=
⎡

⎢

⎢

⎣

𝛼11 ⋯ 𝛼1𝑀
⋮ ⋱ ⋮

𝛼𝑀1 ⋯ 𝛼𝑀𝑀

⎤

⎥

⎥

⎦

, (14)

here the components 𝛼𝑘𝓁 are determined by considering the inner
roduct between time samples as follows

𝑘𝓁 = 1
𝑀 ∫ ∫

𝛿(𝑥, 𝑦, 𝑘 𝑑𝑡)𝛿(𝑥, 𝑦,𝓁 𝑑𝑡)𝑑𝑥𝑑𝑦, (15)

and from the so-called 𝑀 zero-mean snapshots

𝛿(𝑥, 𝑦, 𝑘 𝑑𝑡) = 𝑢(𝑥, 𝑦, 𝑘 𝑑𝑡) − �̄�(𝑥, 𝑦), (16)

with �̄�(𝑥, 𝑦) = mean (𝑢(𝑥, 𝑦, 𝑡)), the time average of the population.
5

𝑡

Hence, by using an eigenvalue decomposition, the basis functions
are determined as a linear combination of the data snapshots

𝜙𝑛(𝑥, 𝑦) =
𝑀
∑

𝑘=1
𝑸(𝑛)

𝑘 𝛿(𝑥, 𝑦, 𝑘 𝑑𝑡), (17)

here 𝑸(𝑛)
𝑘 is the 𝑘th component of the 𝑛th eigenvector of 𝐊.

.4. Galerkin method

The Galerkin method operates a time–space separation which trans-
orms the PDE problem into a system of ODEs. Some details are given
n Ouvrard et al. (2019). It consists of finding an approximate solution
f the PDE defined by

̂(𝑥, 𝑦, 𝑡) =
𝑁
∑

𝑛=1
𝑎𝑛(𝑡)𝜙𝑛(𝑥, 𝑦) + �̄�(𝑥, 𝑦), (18)

here
{

𝑎𝑛(𝑡)
}𝑁
𝑛=1 is the time coefficient set to be estimated.

In the general case of the PDE (1) with the varying parameters
efined by (11), the obtained system of ODEs can be written with the
ollowing matrix formulation

̇ (𝑡) =
(

Γ1 + 𝛽10 𝐈𝑁 − 2Γ2

)

𝐚(𝑡) −
(

𝐈𝑁 ⊗ 𝐚⊤(𝑡)
)

Λ 𝐚(𝑡) + 𝐛1, (19)

ith1

, Kronecker product,
(𝑡) =

[

𝑎1(𝑡) … 𝑎𝑁 (𝑡)
]⊤ ,

𝑁 , 𝑁 ×𝑁 identity matrix,

1 =
⎡

⎢

⎢

⎣

∫ 1(𝜙1)𝜙1 … ∫ 1(𝜙𝑁 )𝜙1
⋮ ⋱ ⋮

∫ 1(𝜙1)𝜙𝑁 … ∫ 1(𝜙𝑁 )𝜙𝑁

⎤

⎥

⎥

⎦

,

2 =
⎡

⎢

⎢

⎣

∫ 𝛽2(𝐻)𝜙1𝜙1�̄� … ∫ 𝛽2(𝐻)𝜙𝑁𝜙1�̄�
⋮ ⋱ ⋮

∫ 𝛽2(𝐻)𝜙1𝜙𝑁 �̄� … ∫ 𝛽2(𝐻)𝜙𝑁𝜙𝑁 �̄�

⎤

⎥

⎥

⎦

,

= ∫ 𝛽2(𝐻)Φ⊗
(

Φ⊗Φ⊤) ,
=
[

𝜙1(𝑥, 𝑦) … 𝜙𝑁 (𝑥, 𝑦)
]⊤ ,

1 =
[

∫ 2(�̄�)𝜙1 … ∫ 2(�̄�)𝜙𝑁
]⊤ ,

1(∙) = 𝐷𝑥(𝐻) 𝜕
2∙

𝜕𝑥2
+𝐷𝑦(𝐻) 𝜕

2∙
𝜕𝑦2

−
(

𝑤𝑥(𝐻) − 𝜕𝐷𝑥(𝐻)
𝜕𝑥

)

𝜕∙
𝜕𝑥

−
(

𝑤𝑦(𝐻) − 𝜕𝐷𝑦(𝐻)
𝜕𝑦

)

𝜕∙
𝜕𝑦 +

∑𝑛𝛽1
𝜐=1 𝛽1𝜐𝐻

𝜐(𝑥, 𝑦, 𝑡)∙,

2(∙) = 𝐷𝑥(𝐻) 𝜕
2∙

𝜕𝑥2
+𝐷𝑦(𝐻) 𝜕

2∙
𝜕𝑦2

−
(

𝑤𝑥(𝐻) − 𝜕𝐷𝑥(𝐻)
𝜕𝑥

)

𝜕∙
𝜕𝑥

−
(

𝑤𝑦(𝐻) − 𝜕𝐷𝑦(𝐻)
𝜕𝑦

)

𝜕∙
𝜕𝑦 + 𝛽1(𝐻) ∙ −𝛽2(𝐻) ∙2 .

(20)

The initial conditions of the ODEs system (19) are given by

𝓁(0) = ∫ (𝑢(𝑥, 𝑦, 0) − �̄�(𝑥, 𝑦))𝜙𝓁(𝑥, 𝑦), (21)

for 𝓁 = 1,… , 𝑁 .
Therefore, given parameters, the simulation of the system of ODEs (1

from the initial conditions (21) provides the approximate solution (18).

3.5. Levenberg–Marquardt algorithm

Because the considered PDE model (1) is nonlinear in parameters,
the Levenberg–Marquardt algorithm is used to identify its parame-
ters (Björck, 1996; Nocedal and Wright, 2006). This algorithm is a
good compromise between the gradient and Newton algorithms. It is
based on the gradient vector, defined by 𝐉′𝜃 = 𝜕𝐽 (𝜽)∕𝜕𝜽, which gives
the direction of the steepest descent of the quadratic criterion (13) and
the pseudo-Hessian matrix which approximates the step leading to the
optimum, i.e. 𝐉′′𝜃𝜃 ≈ 𝜕2𝐽 (𝜽)∕𝜕𝜽2.

1 The double integration ∫ ∫ ∙𝑑𝑥𝑑𝑦 is denoted ∫ ∙.
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The considered model (1) does not have exogenous input, and the
unique excitation is the initial condition 𝑢(𝑥, 𝑦, 0). Moreover, the ecolog-
ical dataset often has a small number of time samples. Thus, in order
to limit the approximation error of the optimization algorithm, the true
parametric sensitivity functions (Knudsen, 1994) are considered with
initial conditions deduced from (21).

At the 𝑖𝑡𝑒𝑟-th iteration, the new parameter vector is given by

𝜽𝑖𝑡𝑒𝑟+1 = 𝜽𝑖𝑡𝑒𝑟 −
(

𝐉′′𝜃𝜃 + 𝜇𝐈𝑁𝜃

)−1
𝐉′𝜃 , (22)

with 𝜇, a tuning parameter, 𝐈𝑁𝜃
, an identity matrix with appropriate di-

mensions, and the gradient and the pseudo-Hessian respectively defined
by

𝐉′𝜃 = −2
𝑁𝑡
∑

𝑘=0

𝑁𝑦
∑

𝑗=0

𝑁𝑥
∑

𝑖=0
(𝑢(𝑖, 𝑗, 𝑘) − �̂�(𝑖, 𝑗, 𝑘))Ξ(𝑘)Φ(𝑖, 𝑗),

𝐉′′𝜃𝜃 = 2
𝑁𝑡
∑

𝑘=0

𝑁𝑦
∑

𝑗=0

𝑁𝑥
∑

𝑖=0
Ξ(𝑘)Φ(𝑖, 𝑗)Φ⊤(𝑖, 𝑗)Ξ⊤(𝑘),

(23)

where �̂�(𝑖, 𝑗, 𝑘) is the approximate solution (18), Φ(𝑥, 𝑦) is defined
in (20), and Ξ(𝑡) is the 𝑁𝜃 × 𝑁 time sensitivity function matrix given
by

Ξ(𝑡) =
[

𝝈𝐚
𝐷𝑥0

(𝑡) ⋯ 𝝈𝐚
𝐷𝑥𝑛𝐷𝑥

(𝑡) 𝝈𝐚
𝐷𝑦0

(𝑡)

⋯ 𝝈𝐚
𝐷𝑦𝑛𝐷𝑦

(𝑡) 𝝈𝐚
𝑤𝑥0

(𝑡) ⋯ 𝝈𝐚
𝑤𝑥𝑛𝑤𝑥

(𝑡)

𝝈𝐚
𝑤𝑦0

(𝑡) ⋯ 𝝈𝐚
𝑤𝑦𝑛𝑤𝑦

(𝑡) 𝝈𝐚
𝛽10

(𝑡) ⋯

𝝈𝐚
𝛽1𝑛𝛽1

(𝑡) 𝝈𝐚
𝛽20

(𝑡) ⋯ 𝝈𝐚
𝛽2𝑛𝛽2

(𝑡)
]⊤

,

𝝈𝐚
𝐷∙𝑛

(𝑡) =
[

𝜎𝑎1𝐷∙𝑛
(𝑡) … 𝜎𝑎𝑁𝐷∙𝑛

(𝑡)
]⊤

,

𝝈𝐚
𝑤∙𝑛

(𝑡) =
[

𝜎𝑎1𝑤∙𝑛
(𝑡) … 𝜎𝑎𝑁𝑤∙𝑛

(𝑡)
]⊤

,

𝝈𝐚
𝛽∙𝑛

(𝑡) =
[

𝜎𝑎1𝛽∙𝑛
(𝑡) … 𝜎𝑎𝑁𝛽∙𝑛

(𝑡)
]⊤

,

𝜎𝑎𝑚◦ (𝑡) =
𝜕𝑎𝑚(𝑡)
𝜕◦

.

(24)

The parametric sensitivity functions are simulated by considering
the following matrix formulations deduced from derivatives of (19)
with respect to each parameter

�̇�𝐚
𝐷∙𝑛

(𝑡) = (Γ1 + 𝛽10 𝐈𝑁 − 2Γ2) 𝝈𝐚
𝐷∙𝑛

(𝑡)

+Γ𝐷∙𝑛
𝐚(𝑡) − (𝐈𝑁 ⊗ 𝝈𝐚

𝐷∙𝑛

⊤(𝑡))Λ 𝐚(𝑡)

−(𝐈𝑁 ⊗ 𝐚⊤(𝑡))Λ 𝝈𝐚
𝐷∙𝑛

(𝑡) + 𝐛𝐷∙𝑛
,

�̇�𝐚
𝑤∙𝑛

(𝑡) = (Γ1 + 𝛽10 𝐈𝑁 − 2Γ2) 𝝈𝐚
𝑤∙𝑛

(𝑡)

−Γ𝑤∙𝑛
𝐚(𝑡) − (𝐈𝑁 ⊗ 𝝈𝐚

𝑤∙𝑛

⊤(𝑡))Λ 𝐚(𝑡)

−(𝐈𝑁 ⊗ 𝐚⊤(𝑡))Λ 𝝈𝐚
𝑤∙𝑛

(𝑡) − 𝐛𝑤∙𝑛
,

�̇�𝐚
𝛽1𝑛

(𝑡) = (Γ1 + 𝛽10 𝐈𝑁 − 2Γ2) 𝝈𝐚
𝛽1𝑛

(𝑡)

+Γ𝛽1𝑛
𝐚(𝑡) − (𝐈𝑁 ⊗ 𝝈𝐚

𝛽1𝑛
⊤(𝑡))Λ 𝐚(𝑡)

−(𝐈𝑁 ⊗ 𝐚⊤(𝑡))Λ 𝝈𝐚
𝛽1𝑛

(𝑡) + 𝐛𝛽1𝑛 ,
�̇�𝐚
𝛽2𝑛

(𝑡) = (Γ1 + 𝛽10 𝐈𝑁 − 2Γ2) 𝝈𝐚
𝛽2𝑛

(𝑡)

−2Γ𝛽2𝑛
𝐚(𝑡) − (𝐈𝑁 ⊗ 𝝈𝐚

𝛽2𝑛
⊤(𝑡))Λ 𝐚(𝑡)

−(𝐈𝑁 ⊗ 𝐚⊤(𝑡))Λ 𝝈𝐚
𝛽2𝑛

(𝑡)
⊤

(25)
6

−(𝐈𝑁 ⊗ 𝐚 (𝑡))Λ𝛽2𝑛
𝐚(𝑡) − 𝐛𝛽2𝑛 ,
for 𝑛 = 0,… , 𝑛𝐷∙
, 𝑛𝑤∙

or 𝑛𝛽∙ and where

Γ𝐷∙𝑛
=

⎡

⎢

⎢

⎢

⎣

∫ 𝐷∙𝑛
(𝜙1)𝜙1 … ∫ 𝐷∙𝑛

(𝜙𝑁 )𝜙1

⋮ ⋱ ⋮
∫ 𝐷∙𝑛

(𝜙1)𝜙𝑁 … ∫ 𝐷∙𝑛
(𝜙𝑁 )𝜙𝑁

⎤

⎥

⎥

⎥

⎦

,

𝑤∙𝑛
=

⎡

⎢

⎢

⎢

⎣

∫ 𝑤∙𝑛
(𝜙1)𝜙1 … ∫ 𝑤∙𝑛

(𝜙𝑁 )𝜙1

⋮ ⋱ ⋮
∫ 𝑤∙𝑛

(𝜙1)𝜙𝑁 … ∫ 𝑤∙𝑛
(𝜙𝑁 )𝜙𝑁

⎤

⎥

⎥

⎥

⎦

,

𝛽10
= 𝐈𝑁 ,

𝛽1𝑛
=
⎡

⎢

⎢

⎣

∫ 𝐻𝑛𝜙1𝜙1 … ∫ 𝐻𝑛𝜙𝑁𝜙1
⋮ ⋱ ⋮

∫ 𝐻𝑛𝜙1𝜙𝑁 … ∫ 𝐻𝑛𝜙𝑁𝜙𝑁

⎤

⎥

⎥

⎦

,

𝛽2𝑛
=
⎡

⎢

⎢

⎣

∫ 𝐻𝑛𝜙1𝜙1�̄� … ∫ 𝐻𝑛𝜙𝑁𝜙1�̄�
⋮ ⋱ ⋮

∫ 𝐻𝑛𝜙1𝜙𝑁 �̄� … ∫ 𝐻𝑛𝜙𝑁𝜙𝑁 �̄�

⎤

⎥

⎥

⎦

,

𝛽2𝑛
= ∫ 𝐻𝑛Φ⊗

(

Φ⊗Φ⊤) ,

𝐷∙𝑛
=
[

∫ 𝐷∙𝑛
(�̄�)𝜙1 … ∫ 𝐷∙𝑛

(�̄�)𝜙𝑁

]⊤
,

𝑤∙𝑛
=
[

∫ 𝑤∙𝑛
(�̄�)𝜙1 … ∫ 𝑤∙𝑛

(�̄�)𝜙𝑁

]⊤
,

𝛽1𝑛
=
[

∫ 𝐻𝑛�̄�𝜙1 … ∫ 𝐻𝑛�̄�𝜙𝑁
]⊤ ,

𝛽2𝑛
=
[

∫ 𝐻𝑛�̄�2𝜙1 … ∫ 𝐻𝑛�̄�2𝜙𝑁
]⊤ ,

𝐷∙𝑛
(◦) = 𝐻𝑛 𝜕2◦

𝜕∙2
+ 𝜕𝐻𝑛

𝜕∙
𝜕◦
𝜕∙

,

𝑤∙𝑛
(◦) = 𝐻𝑛 𝜕◦

𝜕∙ ,

(26)

and with the initial conditions

𝝈𝐚
𝐷∙𝑛

(0) = Γ𝐷∙𝑛
𝐚(0) + 𝐛𝐷∙𝑛

,

𝐚
𝑤∙𝑛

(0) = −Γ𝑤∙𝑛
𝐚(0) − 𝐛𝑤∙𝑛

,

𝝈𝐚
𝛽1𝑛

(0) = Γ𝛽1𝑛
𝐚(0) + 𝐛𝛽1𝑛 ,

𝐚
𝛽2𝑛

(0) = −2Γ𝛽2𝑛
𝐚(0) −

(

𝐈𝑁 ⊗ 𝐚⊤(0)
)

Λ𝛽2𝑛
𝐚(0) − 𝐛𝛽2𝑛 .

(27)

.6. Initial estimate based on 3D partial moments

To obtain an initial estimate 𝜽0, a first estimation of the PDE with
onstant parameters, i.e. with 𝑛𝐷∙

= 0, 𝑛𝑤∙
= 0 and 𝑛𝛽∙ = 0, is

erformed from a least-squares (LS) method based on an extension
o the three dimensions of the partial moments approach developed
n Trigeassou (1987) and Ouvrard and Trigeassou (2011). Let us denote
his estimation 𝜽𝐿𝑆 =

[

𝐷𝑥0 𝐷𝑦0 𝑤𝑥0 𝑤𝑦0 𝛽10 𝛽20
]⊤

.
From there, the values of the missing parameters corresponding to

𝐷∙
> 0, 𝑛𝑤∙

> 0 and 𝑛𝛽∙ > 0 in (12) will be chosen with the expertise
f ecologists or with small values.

Let us define the 3D partial moment with orders 𝓁, 𝑚 and 𝑛 of an
rbitrary signal 𝑓 (𝑥, 𝑦, 𝑡) belonging to a Hilbert space by

𝑓
𝓁,𝑚,𝑛(𝑋, 𝑌 , 𝑇 ) = ∫

𝑋

0 ∫

𝑌

0 ∫

𝑇

0
𝑥𝓁𝑦𝑚𝑡𝑛𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑡 𝑑𝑦 𝑑𝑥, (28)

ith 𝓁, 𝑚 and 𝑛 ∈ {N, −}.2
The idea of the partial moment-based approach is to apply to the

DE (1) with 𝑛𝐷∙
= 0, 𝑛𝑤∙

= 0 and 𝑛𝛽∙ = 0 the following integration

∫

𝑋

0 ∫

𝑥1

0
𝑥22 ∫

𝑌

0 ∫

𝑦1

0
𝑦22 ∫

𝑇

0
𝑡 (1) 𝑑𝑡 𝑑𝑦2 𝑑𝑦1 𝑑𝑥2 𝑑𝑥1 (29)

n such a way that all partial derivatives disappear. Thus, a formulation
ith only partial moments and parameters is obtained in the form of a

2 If 𝓁, 𝑚 or 𝑛 is the symbol –, then there is no integration with
respect to the corresponding variable. For instance, 𝑓

𝓁,𝑚,−(𝑋, 𝑌 , 𝑇 ) =

∫ 𝑋 ∫ 𝑌 𝓁 𝑚

0 0 𝑥 𝑦 𝑓 (𝑥, 𝑦, 𝑇 ) 𝑑𝑦 𝑑𝑥.
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linear regression. Indeed, by considering the integration by parts

∫

𝜏0

0
𝜏1

𝜕𝑓
𝜕𝜏

𝑑𝜏1 = 𝜏0𝑓 (𝜏0) − ∫

𝜏0

0
𝑓 (𝜏1)𝑑𝜏1 (30)

or

∫

𝜏0

0 ∫

𝜏1

0
𝜏22

𝜕2𝑓
𝜕𝜏2

𝑑𝜏2𝑑𝜏1 = 𝜏20𝑓 (𝜏0)

+2𝜏0 ∫

𝜏0

0
𝑓 (𝜏1)𝑑𝜏1 − 6∫

𝜏0

0
𝜏1𝑓 (𝜏1)𝑑𝜏1,

(31)

and the Cauchy formula of repeated integrations

∫

𝑡

0 ∫

𝜏1

0
⋯∫

𝜏𝑛−1

0
𝑓 (𝜏𝑛)𝑑𝜏𝑛 ⋯ 𝑑𝜏2𝑑𝜏1 =

1
(𝑛 − 1)! ∫

𝑡

0
(𝑡 − 𝜏1)𝑛−1𝑓 (𝜏1)𝑑𝜏1,

(32)

q. (29) can be formulated as a linear regression as follows

1(𝑋, 𝑌 , 𝑇 ) = 𝝋⊤(𝑋, 𝑌 , 𝑇 )𝜽𝐿𝑆 , (33)

ith
(𝑋, 𝑌 , 𝑇 ) =

[

2(𝑋, 𝑌 , 𝑇 ) 3(𝑋, 𝑌 , 𝑇 ) −4(𝑋, 𝑌 , 𝑇 )
−5(𝑋, 𝑌 , 𝑇 ) 6(𝑋, 𝑌 , 𝑇 ) −7(𝑋, 𝑌 , 𝑇 )

]⊤ (34)

nd

1 = 𝑋𝑌 𝑇𝑢
2,2,− −𝑋𝑇𝑢

2,3,− − 𝑌 𝑇𝑢
3,2,−

+𝑇𝑢
3,3,− −𝑋𝑌𝑢

2,2,0 +𝑋𝑢
2,3,0 + 𝑌𝑢

3,2,0 −𝑢
3,3,0,

2 = 𝑋2𝑌𝑢
−,2,1 −𝑋2𝑢

−,3,1 + 2𝑋𝑌𝑢
0,2,1

−2𝑋𝑢
0,3,1 − 6𝑌𝑢

1,2,1 + 6𝑢
1,3,1,

3 = 𝑋𝑌 2𝑢
2,−,1 − 𝑌 2𝑢

3,−,1 + 2𝑋𝑌𝑢
2,0,1

−2𝑌𝑢
3,0,1 − 6𝑋𝑢

2,1,1 + 6𝑢
3,1,1,

4 = 3𝑌𝑢
2,2,1 − 3𝑢

2,3,1 − 2𝑋𝑌𝑢
1,2,1 + 2𝑋𝑢

1,3,1,
5 = 3𝑋𝑢

2,2,1 − 3𝑢
3,2,1 − 2𝑋𝑌𝑢

2,1,1 + 2𝑌𝑢
3,1,1,

6 = 𝑋𝑌𝑢
2,2,1 − 𝑌𝑢

3,2,1 −𝑋𝑢
2,3,1 +𝑢

3,3,1,

7 = 𝑋𝑌𝑢2
2,2,1 − 𝑌𝑢2

3,2,1 −𝑋𝑢2
2,3,1 +𝑢2

3,3,1.

(35)

Thus, the PDE with fixed parameters is estimated with the following
least-squares estimator

𝜽𝐿𝑆 =
⎛

⎜

⎜

⎝

𝑁𝑡
∑

𝑘=0

𝑁𝑦
∑

𝑗=0

𝑁𝑥
∑

𝑖=0
𝝋(𝑖, 𝑗, 𝑘)𝝋⊤(𝑖, 𝑗, 𝑘)

⎞

⎟

⎟

⎠

−1

.
𝑁𝑡
∑

𝑘=0

𝑁𝑦
∑

𝑗=0

𝑁𝑥
∑

𝑖=0
𝝋(𝑖, 𝑗, 𝑘)1(𝑖, 𝑗, 𝑘).

(36)

Particular attention should be paid to the estimation of the diffusion
coefficients 𝐷𝑥0 and 𝐷𝑦0 and to the reaction parameters 𝛽10 and 𝛽20
which must have non-negative values. Therefore, a constrained least-
squares problem must be performed to implement the estimator (36)
to ensure positive estimated values for 𝐷𝑥0 , 𝐷𝑦0 , 𝛽10 and 𝛽20 . Some
implementations can be found in Lawson and Hanson (1974).

Note that this LS estimator is biased and may give inaccurate values
due to the numerical implementation of the integrals in (28). But it is
a useful first estimation to overcome the lack of prior knowledge about
the parameters and the initialization problem.

3.7. Stopping test and implementation tip

There are different stopping tests (Björck, 1996; Nocedal and
Wright, 2006) to stop the Levenberg–Marquardt algorithm where the
optimum is considered to have been reached. For instance, it is easy to
implement a stopping test based on the criterion evolution by setting a
priori a tolerance as follows

𝐽 (𝜽𝑖𝑡𝑒𝑟) − 𝐽 (𝜽𝑖𝑡𝑒𝑟+1) < 𝜖 (37)
7

where the tolerance 𝜖 is a small positive real. t
Fig. 6. Spatial distribution of the squares monitored in the French Breeding Bird Survey
scheme.

Due to the particular context of ecological applications with poor
excitation given by the initial conditions and the difficult problem of es-
timating the parameters of the PDE model, the quadratic criterion (13)
presents flat areas where convergence is very slow. The risk is to stop
the iterative procedure prematurely. There are different solutions such
as the simulated annealing approach or the particle swarm optimization
to solve this problem (Rao, 2009).

We propose an easy-to-program implementation tip. When condi-
tion (37) is satisfied, before stopping the algorithm, we test a new
parameter vector with randomly-drawn values close to the parameter
values reached. More precisely, we test the following vector over a few
iterations to find a new path in convergence

𝜽𝑖𝑡𝑒𝑟+1 = 𝜽𝑖𝑡𝑒𝑟 + 0.005 𝝃 𝜽0 (38)

here 𝝃 ∈ R𝑁𝜃 is a random vector with values belonging to [−1, 1]. In
ther words, we change the parameter values within a neighbourhood
f the estimate reached with a random selection lower than 0.5% of the
nitial vector 𝜽0.

. Results

The objectives of this section are to validate the methodology with
ealistic simulated data and to compare the varying-parameter PDE
odel with the popular GLM model on real data.

Let us consider the French population of Yellowhammers. This
mall passerine bird is in global decline and its distribution has con-
racted from the southwest to the northeast of France over the past 20
ears (Keller et al., 2020). The main impacts on this population are
gricultural intensification and global warming.

.1. Data sets

.1.1. Bird data set
Data on Yellowhammers is taken from the French Breeding Bird

urvey described by Jiguet et al. (2012). This survey presents a spatial
istribution of more than 2000 sites (squares 2 × 2 km shown in Fig. 6)
urveyed at least once between 2002 and 2018,3 the considered time
eriod. In each square, an observer counts all individuals seen or heard
uring a fixed period of 5 min in 10 points during the breeding season.

The Yellowhammers data, plotted in Fig. 7, is the response variable.

3 In the following, on several figures, the year 2018 has been omitted for
he sake of clarity.
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Fig. 7. Data on Yellowhammers. The absences are given by black squares and the number of individuals is shown by a red circle of varying size and darkness for numbers between
1 and 25.
4.1.2. Habitat data set
The habitat is characterized by the CORINE Land Cover database

(Büttner and Kosztra, 2017) – European Union, CORINE Land Cover,
2000, 2006, 2012 and 2018. This database gives the land uses accord-
ing to a 44-name nomenclature. Some examples of names are given
in Table 1.

For each spatial step of the map of France, the proportion of each
CORINE Land Cover code is calculated in a radius of 1.5 km, as shown
on the left-hand side of Fig. 8. The right-hand side shows the map
corresponding to non-irrigated arable land, e.g. the CORINE Land Cover
code 𝐶𝐿𝐶211. The time step is six years, more precisely the data
considered are from 2000, 2006, 2012 and 2018.

This gives us 44 habitat variables 𝐶𝐿𝐶𝑥𝑥𝑥 (for each code in Table 1)
8

that change every six years in time.
Table 1
Some examples of the 44 variables and names from the CORINE Land Cover
database.

CORINE Land Cover code Name

𝐶𝐿𝐶111 Continuous urban fabric
𝐶𝐿𝐶211 Non-irrigated arable land
𝐶𝐿𝐶221 Vineyards
... ...

4.1.3. Bioclimatic data set
Global warming is characterized by the Worldclim database (Fick

and Hijmans, 2017). This database includes 19 bioclimatic variables
based on temperature and precipitation, as shown in Table 2 for some
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Fig. 8. Example of a map for calculating habitat variables (left). The habitat variable
𝐶𝐿𝐶211 for years 2012 to 2017 (right).

Table 2
Some examples of the 19 bioclimatic variables and names from the Worldclim
database.

BIO1 Annual mean temperature
BIO2 Mean diurnal range
... ...
BIO12 Annual precipitation
BIO13 Precipitation of wettest month
... ...

Fig. 9. Two examples of bioclimatic variables for 2002: 𝐵𝐼𝑂1, annual mean
temperature, and 𝐵𝐼𝑂12, annual precipitation.

examples. Fig. 9 plotted the bioclimatic variables 𝐵𝐼𝑂1, annual mean
temperature, and 𝐵𝐼𝑂12, annual precipitation.

Therefore, we have 19 bioclimatic variables 𝐵𝐼𝑂𝑥𝑥 (for each code
in Table 2) that change every year in time.

4.2. Validation of the methodology in simulation

4.2.1. The simulation protocol
Let us consider a simulation protocol that provides data similar

to the real French population of Yellowhammers shown in Fig. 7. To
model such a population evolution, let us consider the true variable
parameters defined in (11) as follows

𝐷𝑥(𝐻) = 𝐷𝑦(𝐻) = 𝐷0 +𝐷1𝐻(𝑥, 𝑦, 𝑡), 𝛽1(𝐻) = 𝛽10 ,
𝛽2(𝐻) = 𝛽20 + 𝛽21𝐻(𝑥, 𝑦, 𝑡),

(39)

with the following true parameters vector to be estimated

𝜽𝑡𝑟𝑢𝑒 =
[

𝐷0 𝐷1 𝛽10 𝛽20 𝛽21
]⊤

= [200 − 150 0.01 0.1 − 0.089]⊤ .
(40)

Thereby, the effects described in Section 2.3 lead to a global decline and
a contraction of the population from the southwest to the northeast:

• The diffusion effect is greater in the unfavourable areas with
diffusion coefficients 𝐷𝑥(𝐻) = 𝐷𝑦(𝐻) close to 200 than in the
favourable areas where 𝐷𝑥(𝐻) = 𝐷𝑦(𝐻) are close to 50. Indeed, if
the environment is favourable, juvenile birds will disperse in the
immediate vicinity of their place of birth. Otherwise, the diffusion
is greater.

• The rate of growth or decline given by 𝛽1(𝐻) = 𝛽10 is constant
and the carrying capacity, which is specified by 𝛽1(𝐻)∕𝛽2(𝐻), is
0.91 for 𝐻(𝑥, 𝑦, 𝑡) = 1 and is 0.1 for 𝐻(𝑥, 𝑦, 𝑡) = 0. Thus, globally,
9

the population decreases with a very marked decline for the areas
which become unfavourable.

To summarize, the considered true system is the following PDE

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑡

= 𝜕
𝜕𝑥

[

(

𝐷0 +𝐷1𝐻(𝑥, 𝑦, 𝑡)
) 𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥

]

+ 𝜕
𝜕𝑦

[

(

𝐷0 +𝐷1𝐻(𝑥, 𝑦, 𝑡)
) 𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦

]

+𝛽10𝑢(𝑥, 𝑦, 𝑡) −
(

𝛽20 + 𝛽21𝐻(𝑥, 𝑦, 𝑡)
)

𝑢2(𝑥, 𝑦, 𝑡) .

(41)

The scheduling variable 𝐻(𝑥, 𝑦, 𝑡) was calculated from the habitat
and bioclimatic variables on the basis of a GLM model described in
Section 4.3.1.

To obtain accurate data, the simulation is performed with a spatial
step of 0.5 km and a time step 0.01 year.

As in the actual population study of the Yellowhammers, consider
a small number of time samples corresponding to the years from 2002
to 2018, i.e. 17 time samples.

The considered scheduling variable 𝐻(𝑥, 𝑦, 𝑡) is plotted in Fig. 17
(Section 4.3.1). The latter shows that, from the initial year 2002 to
2017, the conditions for the Yellowhammers are gradually deteriorat-
ing.

Fig. 10 presents the simulated Yellowhammer population 𝑢(𝑥, 𝑦, 𝑡)
obtained for a few years. The considered initial population 𝑢(𝑥, 𝑦, 2002)
is the kriged population taken from the French breeding bird survey
for the Yellowhammer species for the year 2002, i.e. the map at the
top left of Fig. 7. From this initial distribution, a gradual decline takes
place (see Fig. 11) with a more pronounced decline in the southwest,
close to extinction, and a population that remains in favourable areas
notwithstanding a decline in numbers.

4.2.2. Validation of the methodology
The true system simulated in Section 4.2.1 is a reaction–diffusion

PDE defined by (41) with a variable diffusion coefficient, a fixed growth
and a variable carrying capacity. The true parameters are given in (40).

The goal is to estimate the parameters from a prior knowledge
limited to

• a diffusion effect known to be bigger in the unfavourable areas
than the favourable ones,

• and a carrying capacity smaller in the unfavourable areas than
the favourable ones.

These hypotheses correspond to natural behaviours. However, it is
assumed that there are no a priori known approximate values of the
parameters.

4.2.3. First estimation with 3D partial moments
First, the least-squares method based on partial moments proposed

in Section 3.6 is run to estimate initial values of the parameters 𝐷0, 𝛽10
and 𝛽20 .

With the considered PDE structure (41), the regressor in the least-
squares estimate (36) becomes

𝝋(𝑋, 𝑌 , 𝑇 ) =
[(

2(𝑋, 𝑌 , 𝑇 ) +3(𝑋, 𝑌 , 𝑇 )
)

6(𝑋, 𝑌 , 𝑇 ) −7(𝑋, 𝑌 , 𝑇 )
]⊤ .

(42)

The considered measured dataset is {𝑢(𝑖 𝑑𝑥, 𝑗 𝑑𝑦, 𝑘
𝑑𝑡)} 𝑖=0,…,𝑁𝑥; 𝑗=0,…,𝑁𝑦; 𝑘=0,…,𝑁𝑡

with 𝑑𝑥 = 𝑑𝑦 = 4 km, 𝑑𝑡 = 1 year,
𝑁𝑥 = 𝑁𝑦 = 249 and 𝑁𝑡 = 16, i.e. a spatial grid size 250 × 250 and
17 time samples.

The least-squares estimator (36) produces the following estimate

𝜽𝐿𝑆 =
[

𝐷0 𝛽10 𝛽20
]⊤

= [65.7 − 0.0248 0.0239]⊤ . (43)

Notice that the estimated parameters lead to a negative growth
coefficient 𝑟 = 𝛽10 = −0.0248 and a negative carrying capacity 𝐾 =
𝛽10∕𝛽20 ≈ −1.04. The simulation of the PDE model at a point of
spatial coordinates (𝑥 , 𝑦 ), i.e. the simulation of the logistic growth
0 0
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Fig. 10. The simulated Yellowhammer population for a few years (realistic simulated
data example).

Fig. 11. The simulated Yellowhammer population trend versus time (realistic simulated
data example).
10
Fig. 12. Simulation of the Verhulst model (7) with 𝑟 = −0.0248 and 𝐾 = −1.04 (realistic
simulated data example).

Fig. 13. Simulations of the Verhulst model (7) with 𝑟 = −0.0248, 𝐾 = −1.04 and
𝐾 = −1.79 (realistic simulated data example).

reaction (7), plotted in Fig. 12 shows a declining trend which roughly
approaches that of the gradual population trend presented in Fig. 11.

It is important to emphasize that the parameter-fixed PDE model
estimated with the partial moment method is a very simplified mod-
elling of the true structure, a parameter-varying PDE. Moreover, this
least-squares estimate is biased. Therefore, the anomaly of the negative
carrying capacity is due to the difficulties of this simplified model to
fit the measured data.

4.2.4. Estimation with the Levenberg–Marquardt algorithm
From the first estimation (43), the initial parameter is completed

with 𝐷1 = −40 and 𝛽21 = −0.01. Thus, the diffusion coefficient is
equal to 65.7 if 𝐻 = 0, i.e. unfavourable area, and equal to 25.7 if
𝐻 = 1, i.e. favourable area. The carrying capacity is equal to 𝐾 = −1.04
or 𝐾 = −1.79 if 𝐻 = 0 or 𝐻 = 1, respectively. The corresponding
simulations of the logistic growth reactions, plotted in Fig. 13, show
more or less significant decreases for more or less unfavourable areas.

Therefore, in the Levenberg–Marquardt algorithm (22), the initial
parameter vector is given by

⊤ (44)
𝜽0 = [65.7 − 40 − 0.0248 0.0239 − 0.01] .
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Fig. 14. Convergence of the criterion 𝐽 (𝜽𝑖𝑡𝑒𝑟) of the Levenberg–Marquardt algorithm.

Fig. 15. Parameters convergence (green line) with the Levenberg–Marquardt algorithm,
true parameter values (blue line) and implementation tip (38) (red cross) (realistic
simulated data example).

From this initial parameter vector, the convergence of the
Levenberg–Marquardt algorithm is represented in terms of criterion
𝐽 (𝜽𝑖𝑡𝑒𝑟) (Eq. (13)) and parameters in Figs. 14 and 15, respectively.
The red crosses correspond to the implementation tip with the random
draw (38). Without this tip, the algorithm stops on a flat area which can
be considered as a secondary optimum, and the random draw allows
the leaving of this secondary optimum to continue the convergence.

4.3. Application to real data

4.3.1. GLM results
We estimate a GLM model (McCullagh and Nelder, 1983) to rep-

resent the response variable, i.e. the yellowhammer population mea-
surements shown in Fig. 7, from the explicative variables, i.e. the
11

𝑢

habitat and bioclimatic data at the coordinates where Yellowhammers
measurements are available in Figs. 8 and 9, respectively.

In the GLM model framework, a Poisson distribution and a log
ink are considered to represent the counting data of Yellowhammers.
he explicative variables are averaged over a 5-year moving window.
he linear predictor is composed of the intercept, linear and quadratic
erms, and the selection of explicative variables is carried out by AIC
riterion from the 44 habitat variables 𝐶𝐿𝐶𝑥𝑥𝑥 and the 19 bioclimatic
ariables 𝐵𝐼𝑂𝑥𝑥.

At the end of the selection procedure, the estimated GLM model is
omposed of 79 parameters 𝛾𝑖 and yields to the following population

̂𝐺𝐿𝑀 (𝑥, 𝑦, 𝑡) = 𝑒
(

𝛾0+
∑18

𝑖=1 𝛾𝑖+1𝐵𝐼𝑂−−(𝑥,𝑦,𝑡)+
∑14

𝑖=1 𝛾𝑖+19𝐵𝐼𝑂−−2(𝑥,𝑦,𝑡)+

∑25
𝑖=1 𝛾𝑖+33𝐶𝐿𝐶−−−(𝑥,𝑦,𝑡)+

∑21
𝑖=1 𝛾𝑖+58𝐶𝐿𝐶−−−2(𝑥,𝑦,𝑡)

)

.
(45)

The simulated population of Yellowhammers given by the GLM
model (45) is plotted in Fig. 16 with the real data. The fitting criterion4

between the real data and �̂�𝐺𝐿𝑀 at the measurement points and instants
is 25%.

4.3.2. PDE results
We estimate the parameter-varying PDE model defined by

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑡

= 𝜕
𝜕𝑥

[

(𝐷0 +𝐷1𝐻)
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥

]

+ 𝜕
𝜕𝑦

[

(𝐷0 +𝐷1𝐻)
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑦

]

−𝑤𝑥(1 −𝐻)
𝜕𝑢(𝑥, 𝑦, 𝑡)

𝜕𝑥
−𝑤𝑦(1 −𝐻)

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑦

+(𝛽10 + 𝛽11𝐻)𝑢(𝑥, 𝑦, 𝑡) − (𝛽20 + 𝛽21𝐻)𝑢2(𝑥, 𝑦, 𝑡)

(46)

here the scheduling variable is calculated from the GLM model (45)
s follows

(𝑥, 𝑦, 𝑡) =
min(�̂�𝐺𝐿𝑀 (𝑥, 𝑦, 𝑡), 5)

5
, (47)

i.e. 𝐻(𝑥, 𝑦, 𝑡) = 1 where the GLM model predicts a number of individuals
reater than or equal to 5, which can be considered as an abundant pop-
lation for the considered protocol and the Yellowhammer population.
he considered 𝐻(𝑥, 𝑦, 𝑡) is plotted in Fig. 17.

After following the procedure described in Section 3, the approx-
mate solution (18) of the PDE (46) yields a fitting criterion of 44%.
he corresponding simulated population of Yellowhammers is plotted

n Fig. 18 with the real data.

. Discussion

Let us recall the difficult context of parametric estimation of PDE
odels, which is the main reason for the low use of this type of model

n wildlife population dynamics.
The proposed tools are:

• A parameter-varying PDE model;
• A parameter-varying PDE simulator;
• A complete parametric estimation procedure.

The aims of this paper are to present the different tools, validate
hem on realistic simulated data and give some first results on real data
n comparison with a GLM model.

Looking at Figs. 14 and 15, even if the convergence is slow, we
otice that the estimated parameters tend towards the true parameters.

In Fig. 15, there is a difference between the estimated parameters
1000 and the true parameters 𝜽𝑡𝑟𝑢𝑒 which is due to the numerical
mplementation and the POD-Galerkin approximate solution of the
DE. However, within the difficult context of the study of wildlife

4 The fitting criterion is defined by 100
(

1 − ‖𝑢−�̂�‖2
‖𝑢−mean(𝑢)‖2

)

where �̂� is �̂�𝐺𝐿𝑀 or
̂, i.e. Eq. (45) or (18), respectively.
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Fig. 16. Simulated population �̂�𝐺𝐿𝑀 (𝑥, 𝑦, 𝑡) of Yellowhammers given by the GLM model (maps with a colour scale between blue and yellow) and real data (black squares for the
absences and red circle of varying size and darkness for the number of individuals between 1 and 25).
population dynamics described in Section 3, these results are quite good
and validate the methodology.

In Section 4.3, the application to real data shows that the parameter-
varying PDE model gives a much better fit than the GLM model.

6. Conclusions

In this paper, a new methodology for estimating population dy-
namic models is proposed and validated. The considered models are
particularly suitable for representing the impacts of global changes on
wildlife populations. In fact, new parameter-varying PDE models are
proposed and the variable parameters make it possible to introduce
the environmental heterogeneity which can characterize agricultural
intensification or global warming, for example.
12
Particular attention was paid to the implementation of the identifi-
cation procedure. Parametric estimation for PDE models is a challeng-
ing problem and this difficulty is heightened in the case of ecological
data. For that reason, the optimization is performed with true paramet-
ric sensitivity functions. PDE solutions are determined by a Galerkin
method with basis functions given by a proper orthogonal decomposi-
tion applied to the measured data. This is an original implementation
that considerably reduces the computation time of the parametric esti-
mation procedure. For the initialization of the optimization algorithm,
a pre-estimate is performed to overcome the lack of prior knowledge
of the parameters.

The tools are validated for realistic simulated data. The ability of the
parameter-varying PDE model to represent the impact of global change
has been demonstrated for the French population of Yellowhammers.
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Fig. 17. The scheduling variable 𝐻(𝑥, 𝑦, 𝑡) given by (47).
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Fig. 18. Simulated population �̂�(𝑥, 𝑦, 𝑡) of Yellowhammers given by the POD-Galerkin approximate (46) of the PED model (46) (maps with a colour scale between blue and yellow)
and real data (black squares for the absences and red circle of varying size and darkness for the number of individuals between 1 and 25).
Appendix A. Crank–Nicolson scheme for Eq. (9)

Consider the Crank–Nicolson scheme (Crank and Nicolson, 1996)
to simulate Eq. (9). The interest of this method is that it gives a good
compromise between the explicit and implicit Euler methods.

By adopting the discrete notation 𝑓𝑘
𝑖𝑗 = 𝑓 (𝑥𝑖, 𝑦𝑗 , 𝑡𝑘) where 𝑥𝑖 = 𝑥0 +

𝑖 𝑑𝑥, 𝑦𝑗 = 𝑦0 + 𝑗 𝑑𝑦 and 𝑡𝑘 = 𝑘 𝑑𝑡, for any continuous function 𝑓 (𝑥, 𝑦, 𝑡),
the considered discretization for the time and spatial derivatives are
14
the following

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑡

=
𝑢𝑘+1𝑖,𝑗 − 𝑢𝑘𝑖,𝑗

𝑑𝑡
,

𝜕2𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑥2

= 1
2

(

𝑢𝑘+1𝑖−1,𝑗 − 2𝑢𝑘+1𝑖,𝑗 + 𝑢𝑘+1𝑖+1,𝑗

𝑑𝑥2
+

𝑢𝑘𝑖−1,𝑗 − 2𝑢𝑘𝑖,𝑗 + 𝑢𝑘𝑖+1,𝑗
𝑑𝑥2

)

,

𝜕2𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑦2

= 1
2

(

𝑢𝑘+1𝑖,𝑗−1 − 2𝑢𝑘+1𝑖,𝑗 + 𝑢𝑘+1𝑖,𝑗+1

𝑑𝑦2
+

𝑢𝑘𝑖,𝑗−1 − 2𝑢𝑘𝑖,𝑗 + 𝑢𝑘𝑖,𝑗+1
𝑑𝑦2

)

,

𝜕𝑢(𝑥, 𝑦, 𝑡)
𝜕𝑥

= 1
2

(

𝑢𝑘+1𝑖+1,𝑗 − 𝑢𝑘+1𝑖−1,𝑗

2𝑑𝑥
+

𝑢𝑘𝑖+1,𝑗 − 𝑢𝑘𝑖−1,𝑗
2𝑑𝑥

)

,

𝜕𝑢(𝑥, 𝑦, 𝑡)
(

𝑢𝑘+1 − 𝑢𝑘+1 𝑢𝑘 − 𝑢𝑘
)

(A.1)
𝜕𝑦
= 1

2
𝑖,𝑗+1 𝑖,𝑗−1

2𝑑𝑦
+ 𝑖,𝑗+1 𝑖,𝑗−1

2𝑑𝑦
.
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−

𝑃

𝑇

𝑆

𝑂

a
𝑢

i

𝑨

w

𝑼

𝑨
𝑂
w

𝑨

𝑩

By replacing the derivatives by their discretizations in (9), the following
discretized formulation is obtained:

𝑅𝑖𝑗𝑢𝑘+1𝑖−1𝑗 +𝑄𝑖𝑗𝑢𝑘+1𝑖𝑗−1 + 𝑃𝑖𝑗𝑢𝑘+1𝑖𝑗 + 𝑆𝑖𝑗𝑢𝑘+1𝑖𝑗+1 + 𝑂𝑖𝑗𝑢𝑘+1𝑖+1𝑗 =

𝑅𝑖𝑗𝑢
𝑘
𝑖−1𝑗 −𝑄𝑖𝑗𝑢

𝑘
𝑖𝑗−1 + 𝑇𝑖𝑗𝑢

𝑘
𝑖𝑗 − 𝑆𝑖𝑗𝑢

𝑘
𝑖𝑗+1 − 𝑂𝑖𝑗𝑢

𝑘
𝑖+1𝑗

(A.2)

with

𝑅𝑖𝑗 =
𝑑𝑡

8𝑑𝑥2
𝐷𝑘

𝑥𝑖+1𝑗
− 𝑑𝑡

8𝑑𝑥2
𝐷𝑘

𝑥𝑖−1𝑗
− 𝑑𝑡

4𝑑𝑥
𝑤𝑘

𝑥𝑖𝑗
− 𝑑𝑡

2𝑑𝑥2
𝐷𝑘

𝑥𝑖𝑗
,

𝑄𝑖𝑗 =
𝑑𝑡

8𝑑𝑦2
𝐷𝑘

𝑦𝑖𝑗+1
− 𝑑𝑡

8𝑑𝑦2
𝐷𝑘

𝑦𝑖𝑗−1
− 𝑑𝑡

4𝑑𝑦
𝑤𝑘

𝑦𝑖𝑗
− 𝑑𝑡

2𝑑𝑦2
𝐷𝑘

𝑦𝑖𝑗
,

𝑖𝑗 = 1 + 𝑑𝑡
𝑑𝑥2

𝐷𝑘
𝑥𝑖𝑗

+ 𝑑𝑡
𝑑𝑦2

𝐷𝑘
𝑦𝑖𝑗
,

𝑖𝑗 = 1 − 𝑑𝑡
𝑑𝑥2

𝐷𝑘
𝑥𝑖𝑗

− 𝑑𝑡
𝑑𝑦2

𝐷𝑘
𝑦𝑖𝑗
,

𝑖𝑗 = − 𝑑𝑡
8𝑑𝑦2

𝐷𝑘
𝑦𝑖𝑗+1

+ 𝑑𝑡
8𝑑𝑦2

𝐷𝑘
𝑦𝑖𝑗−1

+ 𝑑𝑡
4𝑑𝑦

𝑤𝑘
𝑦𝑖𝑗

− 𝑑𝑡
2𝑑𝑦2

𝐷𝑘
𝑦𝑖𝑗
,

𝑖𝑗 = − 𝑑𝑡
8𝑑𝑥2

𝐷𝑘
𝑥𝑖+1𝑗

+ 𝑑𝑡
8𝑑𝑥2

𝐷𝑘
𝑥𝑖−1𝑗

+ 𝑑𝑡
4𝑑𝑥

𝑤𝑘
𝑥𝑖𝑗

− 𝑑𝑡
2𝑑𝑥2

𝐷𝑘
𝑥𝑖𝑗

.

(A.3)

The applied boundary conditions are homogeneous Dirichlet bound-
ry conditions, i.e. for any 𝑖 and 𝑗, 𝑢𝑘𝑖𝑁𝑦+1

= 0, 𝑢𝑘𝑖0 = 0, 𝑢𝑘𝑁𝑥+1𝑗
= 0 and

𝑘
0𝑗 = 0.

Therefore, the simulation of Eq. (9) amounts to solving the follow-
ng linear equation

𝑼𝑘+1 = 𝑩𝑼𝑘, (A.4)

here

𝑘 =
[

𝑢𝑘11 … 𝑢𝑘𝑁𝑥1
… 𝑢𝑘1𝑗 … 𝑢𝑘𝑁𝑥𝑗

… 𝑢𝑘1𝑁𝑦
… 𝑢𝑘𝑁𝑥𝑁𝑦

]⊤
, (A.5)

is an invertible matrix composed of the terms 𝑅𝑖𝑗 , 𝑄𝑖𝑗 , 𝑃𝑖𝑗 , 𝑆𝑖𝑗 and
𝑖𝑗 , and 𝑩 is an matrix composed of the terms 𝑅𝑖𝑗 , 𝑄𝑖𝑗 , 𝑇𝑖𝑗 , 𝑆𝑖𝑗 and 𝑂𝑖𝑗
ith, for instance, for 𝑁𝑥 = 𝑁𝑦 = 3, the following formulation

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑃1,1 𝑆1,1 0 𝑂1,1 0 0 0 0 0
𝑄2,1 𝑃2,1 𝑆2,1 0 𝑂2,1 0 0 0 0
0 𝑄3,1 𝑃3,1 0 0 𝑂3,1 0 0 0

𝑅1,2 0 0 𝑃1,2 𝑆1,2 0 𝑂1,2 0 0
0 𝑅2,2 0 𝑄2,2 𝑃2,2 𝑆2,2 0 𝑂2,2 0
0 0 𝑅3,2 0 𝑄3,2 𝑃3,2 0 0 𝑂3,2
0 0 0 𝑅1,3 0 0 𝑃1,3 𝑆1,3 0
0 0 0 0 𝑅2,3 0 𝑄2,3 𝑃2,3 𝑆2,3
0 0 0 0 0 𝑅3,3 0 𝑄3,3 𝑃3,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑇1,1 −𝑆1,1 0 −𝑂1,1 0 0 0 0 0
−𝑄2,1 𝑇2,1 −𝑆2,1 0 −𝑂2,1 0 0 0 0
0 −𝑄3,1 𝑇3,1 0 0 −𝑂3,1 0 0 0

−𝑅1,2 0 0 𝑇1,2 −𝑆1,2 0 −𝑂1,2 0 0
0 −𝑅2,2 0 −𝑄2,2 𝑇2,2 −𝑆2,2 0 −𝑂2,2 0
0 0 −𝑅3,2 0 −𝑄3,2 𝑇3,2 0 0 −𝑂3,2

0 0 0 −𝑅1,3 0 0 𝑇1,3 −𝑆1,3 0
0 0 0 0 𝑅2,3 0 −𝑄2,3 𝑇2,3 −𝑆2,3

0 0 0 0 0 𝑅3,3 0 −𝑄3,3 𝑇3,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Solving the linear system (A.4) requires inverting the large matrix
𝑨 of size R𝑁𝑥𝑁𝑦×𝑁𝑥𝑁𝑦 . It is preferable to use a fast and precise imple-
mentation such as the biconjugate gradients stabilized method (Barrett
et al., 1994) which allows the consideration of a fine spatial mesh, i.e.
small values for 𝑑𝑥 and 𝑑𝑦.

Appendix B. Explicit Euler method for Eq. (10)

The implementation to simulate the ODE (10) is carried out with
the explicit Euler method and the following discretized formulation

𝑢𝑘+1 = 𝑢𝑘 + 𝑑𝑡
(

𝛽𝑘 𝑢𝑘 − 𝛽𝑘 (𝑢𝑘 )2
)

. (B.1)
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